Liliana M. Dávalos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4467768/publications.pdf

Version: 2024-02-01

88 papers 5,807 citations

147726 31 h-index 91828 69 g-index

98 all docs 98 docs citations 98 times ranked 9193 citing authors

#	Article	IF	CITATIONS
1	The future of psychiatry should be One Health. Reviews on Environmental Health, 2023, 38, 399-400.	1.1	4
2	Colonial Legacies Influence Biodiversity Lessons: How Past Trade Routes and Power Dynamics Shape Present-Day Scientific Research and Professional Opportunities for Caribbean Scientists. American Naturalist, 2022, 200, 140-155.	1.0	18
3	Contradictory Phylogenetic Signals in the Laurasiatheria Anomaly Zone. Genes, 2022, 13, 766.	1.0	7
4	Pervasive Genomic Signatures of Local Adaptation to Altitude Across Highland Specialist Andean Hummingbird Populations. Journal of Heredity, 2021, 112, 229-240.	1.0	10
5	Dietary Diversification and Specialization in Neotropical Bats Facilitated by Early Molecular Evolution. Molecular Biology and Evolution, 2021, 38, 3864-3883.	3.5	24
6	Where the wild things were: intrinsic and extrinsic extinction predictors in the world's most depleted mammal fauna. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202905.	1.2	3
7	Find the food first: An omnivorous sensory morphotype predates biomechanical specialization for plant based diets in phyllostomid bats*. Evolution; International Journal of Organic Evolution, 2021, 75, 2791-2801.	1.1	21
8	<i>Bats and Viruses: Current Research and Future Trends</i> . Edited by Eugenia Corrales-Aguilar and Martin Schwemmle. Norfolk (United Kingdom): Caister Academic Press. \$319.00 (paper). iv + 224 p.; ill.; index. ISBN: 978-1-912530-14-4 (pb); 978-1-912530-15-1 (eb). 2020 Quarterly Review of Biology, 2021, 96, 140-141.	0.0	0
9	Largeâ€scale genome sampling reveals unique immunity and metabolic adaptations in bats. Molecular Ecology, 2021, 30, 6449-6467.	2.0	40
10	No peace for the forest: Rapid, widespread land changes in the Andes-Amazon region following the Colombian civil war. Global Environmental Change, 2021, 69, 102283.	3.6	38
11	Diversity in olfactory receptor repertoires is associated with dietary specialization in a genus of frugivorous bat. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	10
12	Fire-induced loss of the world's most biodiverse forests in Latin America. Science Advances, 2021, 7, .	4.7	33
13	Fruit odorants mediate co-specialization in a multispecies plant–animal mutualism. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210312.	1.2	11
14	Nectar-feeding bats and birds show parallel molecular adaptations in sugar metabolism enzymes. Current Biology, 2021, 31, 4667-4674.e6.	1.8	7
15	Drug pollution & Sustainable Development Goals. Science of the Total Environment, 2021, 800, 149412.	3.9	24
16	Forests, Coca, and Conflict: Grass Frontier Dynamics and Deforestation in the Amazon-Andes. Journal of Illicit Economies and Development, 2021, 3, 74.	0.2	2
17	Using Case Studies to Improve the Critical Thinking Skills of Undergraduate Conservation Biology Students. Case Studies in the Environment, 2021, 5, .	0.4	5
18	Morphological Diversification under High Integration in a Hyper Diverse Mammal Clade. Journal of Mammalian Evolution, 2020, 27, 563-575.	1.0	49

#	Article	IF	CITATIONS
19	Social Investment and Smallholder Coca Cultivation in Colombia. Journal of Development Studies, 2020, 56, 1118-1140.	1.2	12
20	Evaluating the performance of targeted sequence capture, RNAâ€Seq, and degenerateâ€primer PCR cloning for sequencing the largest mammalian multigene family. Molecular Ecology Resources, 2020, 20, 140-153.	2.2	15
21	Six reference-quality genomes reveal evolution of bat adaptations. Nature, 2020, 583, 578-584.	13.7	210
22	Pandemics' historical role in creating inequality. Science, 2020, 368, 1322-1323.	6.0	13
23	Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats. Molecular Ecology, 2020, 29, 4366-4381.	2.0	32
24	The allometry of daily energy expenditure in hummingbirds: An energy budget approach. Journal of Animal Ecology, 2020, 89, 1254-1261.	1.3	10
25	Foraging shifts and visual preadaptation in ecologically diverse bats. Molecular Ecology, 2020, 29, 1839-1859. <i>Alandbook of the Mammals of the World, Volume 9: Bats Chief Editors: Don E, Wilson and Battery (Inc.) (Inc.)</i>	2.0	19
26	Russell A. Mittermeier; Associate Editors: Albert MartÃnez Vilalta, David Leslie Jr. Marc Olivé, and Andrew Elliott; Color Plates Illustrators: Ilian Velikov, Àlex Mascarell, LluÃs Sogorb, Blanca MartÃ, Francesc Jutglar, Faansie Peacock, and Jesús RodrÃguez-Osorio; Photographic Editor: José Luis Copete; Authors: Luis F. Aguirre et al. Barcelona (Spain): Lynx Edicions. ⟨i⟩â,¬160.00. 1008 p.; ill.; index. ISBN:	0.0	0
27	978-84 Quarterly Review of Biology, 2020, 95, 255-256. A coalescent-based estimator of genetic drift, and acoustic divergence in the Pteronotus parnellii species complex. Heredity, 2019, 122, 417-427.	1.2	4
28	Expressed Vomeronasal Type-1 Receptors (V1rs) in Bats Uncover Conserved Sequences Underlying Social Chemical Signaling. Genome Biology and Evolution, 2019, 11, 2741-2749.	1.1	13
29	Tissue Collection of Bats for -Omics Analyses and Primary Cell Culture. Journal of Visualized Experiments, 2019, , .	0.2	10
30	Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biology and Evolution, 2019, 11, 1573-1585.	1.1	49
31	Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biology and Evolution, 2019, 11, 1552-1572.	1.1	44
32	Curb land grabbing to save the Amazon. Nature Ecology and Evolution, 2019, 3, 1497-1497.	3.4	25
33	Protocols for the Molecular Evolutionary Analysis of Membrane Protein Gene Duplicates. Methods in Molecular Biology, 2019, 1851, 49-62.	0.4	16
34	Identifying Municipal Risk Factors for Leftist Guerrilla Violence in Colombia. Peace Economics, Peace Science and Public Policy, 2018, 24, .	0.3	5
35	Strength of selection on the Trpc2 gene predicts accessory olfactory bulb form in bat vomeronasal evolution. Biological Journal of the Linnean Society, 2018, 123, 796-804.	0.7	9
36	Eating down the food chain: generalism is not an evolutionary dead end for herbivores. Ecology Letters, 2018, 21, 402-410.	3.0	33

#	Article	IF	CITATIONS
37	Out of the Antilles: Fossil phylogenies support reverse colonization of bats to South America. Journal of Biogeography, 2018, 45, 859-873.	1.4	26
38	Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species. Annual Review of Animal Biosciences, 2018, 6, 23-46.	3.6	166
39	Opposition Support and the Experience of Violence Explain Colombian Peace Referendum Results. Journal of Politics in Latin America, 2018, 10, 99-122.	0.7	18
40	Assessing Soft-Tissue Shrinkage Estimates in Museum Specimens Imaged With Diffusible Iodine-Based Contrast-Enhanced Computed Tomography (diceCT). Microscopy and Microanalysis, 2018, 24, 284-291.	0.2	40
41	Updated distribution maps for neotropical bats in the superfamily Noctilionoidea. Ecology, 2018, 99, 2131-2131.	1.5	9
42	Multifactorial processes underlie parallel opsin loss in neotropical bats. ELife, 2018, 7, .	2.8	41
43	Recent extinctions disturb path to equilibrium diversity in Caribbean bats. Nature Ecology and Evolution, 2017, 1, 26.	3.4	24
44	<i>Trpc2</i> pseudogenization dynamics in bats reveal ancestral vomeronasal signaling, then pervasive loss. Evolution; International Journal of Organic Evolution, 2017, 71, 923-935.	1.1	32
45	Integrating remotely sensed fires for predicting deforestation for REDD+. Ecological Applications, 2017, 27, 1294-1304.	1.8	13
46	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
47	Anthropogenic Extinction Dominates Holocene Declines of West Indian Mammals. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 301-327.	3.8	85
48	Spatial autocorrelation reduces model precision and predictive power in deforestation analyses. Ecosphere, 2017, 8, e01824.	1.0	21
49	Phylogeny and Divergence Times of Lemurs Inferred with Recent and Ancient Fossils in the Tree. Systematic Biology, 2016, 65, 772-791.	2.7	141
50	Deforestation and Coca Cultivation Rooted in Twentieth-Century Development Projects. BioScience, 2016, 66, 974-982.	2.2	60
51	Records of the Cave-Dwelling Bats (Mammalia: Chiroptera) of Hispaniola with an Examination of Seasonal Variation in Diversity. Acta Chiropterologica, 2016, 18, 269-278.	0.2	6
52	Bats (Chiroptera: Noctilionoidea) Challenge a Recent Origin of Extant Neotropical Diversity. Systematic Biology, 2016, 65, 432-448.	2.7	148
53	A Bayesian Spatial Model Highlights Distinct Dynamics in Deforestation from Coca and Pastures in an Andean Biodiversity Hotspot. Forests, 2015, 6, 3828-3846.	0.9	37
54	From the Field to the Lab: Best Practices for Field Preservation of Bat Specimens for Molecular Analyses. PLoS ONE, 2015, 10, e0118994.	1.1	18

#	Article	IF	CITATIONS
55	Amino acid transporter expansions associated with the evolution of obligate endosymbiosis in sap-feeding insects (Hemiptera: sternorrhyncha). BMC Evolutionary Biology, 2015, 15, 52.	3.2	22
56	Bayesian hierarchical models suggest oldest known plant-visiting bat was omnivorous. Biology Letters, 2015, 11, 20150501.	1.0	17
57	SELECTION FOR MECHANICAL ADVANTAGE UNDERLIES MULTIPLE CRANIAL OPTIMA IN NEW WORLD LEAF-NOSED BATS. Evolution; International Journal of Organic Evolution, 2014, 68, 1436-1449.	1.1	81
58	Demand for beef is unrelated to pasture expansion in northwestern Amazonia. Biological Conservation, 2014, 170, 64-73.	1.9	48
59	A Cluster of Olfactory Receptor Genes Linked to Frugivory in Bats. Molecular Biology and Evolution, 2014, 31, 917-927.	3.5	64
60	Integrating Incomplete Fossils by Isolating Conflicting Signal in Saturated and Non-Independent Morphological Characters. Systematic Biology, 2014, 63, 582-600.	2.7	80
61	Dynamic recruitment of amino acid transporters to the insect/symbiont interface. Molecular Ecology, 2014, 23, 1608-1623.	2.0	57
62	Molecular evolution of growth hormone and insulin-like growth factor 1 receptors in long-lived, small-bodied mammals. Gene, 2014, 549, 228-236.	1.0	19
63	Sex-biased dispersal produces high error rates in mitochondrial distance-based and tree-based species delimitation. Journal of Mammalogy, 2014, 95, 781-791.	0.6	25
64	An horizon scan of biogeography. Frontiers of Biogeography, 2013, 5, .	0.8	3
65	Morphological innovation, diversification and invasion of a new adaptive zone. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1797-1805.	1.2	220
66	Understanding phylogenetic incongruence: lessons from phyllostomid bats. Biological Reviews, 2012, 87, 991-1024.	4.7	88
67	Deglaciation explains bat extinction in the $\langle scp \rangle C \langle scp \rangle$ aribbean. Ecology and Evolution, 2012, 2, 3045-3051.	0.8	24
68	Keeping it simple: flowering plants tend to retain, and revert to, simple leaves. New Phytologist, 2012, 193, 481-493.	3.5	34
69	Detecting the Immune System Response of a 500 Year-Old Inca Mummy. PLoS ONE, 2012, 7, e41244.	1.1	57
70	West Indian Mammals. , 2012, , 157-202.		34
71	Forests and Drugs: Coca-Driven Deforestation in Tropical Biodiversity Hotspots. Environmental Science & Environmental Science	4.6	138
72	The River-Refuge Hypothesis and Other Contributions of M $\tilde{\rm A}_{l}$ rcio Ayres to Conservation Science. , 2011, , 315-322.		0

#	Article	IF	CITATIONS
73	Disabusing cocaine: Pervasive myths and enduring realities of a globalised commodity. International Journal of Drug Policy, 2009, 20, 381-386.	1.6	26
74	Accounting for molecular stochasticity in systematic revisions: Species limits and phylogeny of Paroaria. Molecular Phylogenetics and Evolution, 2009, 53, 234-248.	1.2	18
75	A new species of Lonchophylla (Chiroptera: Phyllostomidae) from the eastern Andes of northwestern South America. American Museum Novitates, 2008, 3635, 1.	0.2	10
76	Saturation and base composition bias explain phylogenomic conflict in Plasmodium. Genomics, 2008, 91, 433-442.	1.3	56
77	Short-faced bats (Phyllostomidae: Stenodermatina): a Caribbean radiation of strict frugivores. Journal of Biogeography, 2007, 34, 364-375.	1.4	47
78	The Nature and Dynamics of Bacterial Genomes. Science, 2006, 311, 1730-1733.	6.0	252
79	The geography of diversification in the mormoopids (Chiroptera: Mormoopidae). Biological Journal of the Linnean Society, 2006, 88, 101-118.	0.7	57
80	Molecular phylogeny of funnel-eared bats (Chiroptera: Natalidae), with notes on biogeography and conservation. Molecular Phylogenetics and Evolution, 2005, 37, 91-103.	1,2	40
81	Exploring population genetic structure in three species of Lesser Antillean bats. Molecular Ecology, 2004, 13, 2557-2566.	2.0	64
82	Phylogeny and biogeography of Caribbean mammals. Biological Journal of the Linnean Society, 2004, 81, 373-394.	0.7	87
83	PHYLOGENY OF THE LONCHOPHYLLINI (CHIROPTERA: PHYLLOSTOMIDAE). Journal of Mammalogy, 2004, 85, 404-413.	0.6	23
84	A New Chocoan Species of Lonchophylla (Chiroptera: Phyllostomidae). American Museum Novitates, 2004, 3426, 1-14.	0.2	11
85	Title is missing!. Biodiversity and Conservation, 2003, 12, 1511-1524.	1,2	8
86	Geographical sampling bias and its implications for conservation priorities in Africa. Journal of Biogeography, 2003, 30, 1719-1727.	1.4	323
87	Illicit Crops and Bird Conservation Priorities in Colombia. Conservation Biology, 2002, 16, 1086-1096.	2.4	36
88	The San Lucas mountain range in Colombia: how much conservation is owed to the violence?. Biodiversity and Conservation, 2001, 10, 69-78.	1.2	69