
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/446771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 2002, 82, 1367-1375.	3.9	850
2	Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. Journal of Neuroscience Research, 1999, 57, 195-206.	2.9	401
3	Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2911-2916.	7.1	391
4	Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. Journal of Neurochemistry, 2002, 80, 101-110.	3.9	361
5	Dietary Restriction Increases the Number of Newly Generated Neural Cells, and Induces BDNF Expression, in the Dentate Gyrus of Rats. Journal of Molecular Neuroscience, 2000, 15, 99-108.	2.3	343
6	Cellular and Molecular Mechanisms Underlying Perturbed Energy Metabolism and Neuronal Degeneration in Alzheimer's and Parkinson's Diseases. Annals of the New York Academy of Sciences, 1999, 893, 154-175.	3.8	326
7	Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nature Medicine, 2012, 18, 153-158.	30.7	300
8	Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron, 2017, 94, 93-107.e6.	8.1	274
9	Dietary restriction and 2â€deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. Journal of Neuroscience Research, 1999, 57, 195-206.	2.9	271
10	Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms. Journal of Neurochemistry, 2003, 84, 417-431.	3.9	244
11	Single Particle Characterization of Iron-induced Pore-forming α-Synuclein Oligomers. Journal of Biological Chemistry, 2008, 283, 10992-11003.	3.4	204
12	trans-(â^')-Îμ-Viniferin Increases Mitochondrial Sirtuin 3 (SIRT3), Activates AMP-activated Protein Kinase (AMPK), and Protects Cells in Models of Huntington Disease. Journal of Biological Chemistry, 2012, 287, 24460-24472.	3.4	192
13	Leptin-mediated Cell Survival Signaling in Hippocampal Neurons Mediated by JAK STAT3 and Mitochondrial Stabilization. Journal of Biological Chemistry, 2008, 283, 1754-1763.	3.4	178
14	Brain-derived neurotrophic factor mediates an excitoprotective effect of dietary restriction in mice. Journal of Neurochemistry, 2001, 76, 619-626.	3.9	173
15	Reversal of Behavioral and Metabolic Abnormalities, and Insulin Resistance Syndrome, by Dietary Restriction in Mice Deficient in Brain-Derived Neurotrophic Factor. Endocrinology, 2003, 144, 2446-2453.	2.8	166
16	Dietary Restriction Stimulates BDNF Production in the Brain and Thereby Protects Neurons Against Excitotoxic Injury. Journal of Molecular Neuroscience, 2001, 16, 1-12.	2.3	157
17	The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington's disease mouse model. Experimental Neurology, 2008, 210, 154-163.	4.1	152
18	"Apoptotic―biochemical cascades in synaptic compartments: Roles in adaptive plasticity and neurodegenerative disorders. Journal of Neuroscience Research, 1999, 58, 152-166.	2.9	150

#	Article	IF	CITATIONS
19	Altered Calcium Homeostasis and Mitochondrial Dysfunction in Cortical Synaptic Compartments of Presenilin-1 Mutant Mice. Journal of Neurochemistry, 2008, 72, 1030-1039.	3.9	144
20	Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington's disease. Neurobiology of Disease, 2008, 30, 312-322.	4.4	129
21	Folic acid and homocysteine in age-related disease. Ageing Research Reviews, 2002, 1, 95-111.	10.9	119
22	Prophylactic activation of neuroprotective stress response pathways by dietary and behavioral manipulations. NeuroRx, 2004, 1, 111-116.	6.0	119
23	Peroxisome-Proliferator-Activated Receptor Gamma Coactivator 1 Â Contributes to Dysmyelination in Experimental Models of Huntington's Disease. Journal of Neuroscience, 2011, 31, 9544-9553.	3.6	117
24	Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease. Human Molecular Genetics, 2013, 22, 2462-2470.	2.9	113
25	Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson's disease. Annals of Neurology, 1999, 46, 587-597.	5.3	108
26	Neuroprotective effects of <scp>PPAR</scp> â€Î³ agonist rosiglitazone in N171â€82Q mouse model of Huntington's disease. Journal of Neurochemistry, 2013, 125, 410-419.	3.9	98
27	Neuroprotective and neurorestorative signal transduction mechanisms in brain aging: modification by genes, diet and behavior. Neurobiology of Aging, 2002, 23, 695-705.	3.1	89
28	Prostate Apoptosis Response-4 Production in Synaptic Compartments Following Apoptotic and Excitotoxic Insults. Journal of Neurochemistry, 2002, 72, 2312-2322.	3.9	87
29	Paroxetine retards disease onset and progression in Huntingtin mutant mice. Annals of Neurology, 2004, 55, 590-594.	5.3	84
30	Longitudinal characterization of brain atrophy of a Huntington's disease mouse model by automated morphological analyses of magnetic resonance images. NeuroImage, 2010, 49, 2340-2351.	4.2	84
31	Early white matter abnormalities, progressive brain pathology and motor deficits in a novel knock-in mouse model of Huntington's disease. Human Molecular Genetics, 2015, 24, 2508-2527.	2.9	78
32	Baicalein reduces E46K αâ€synuclein aggregation <i>in vitro</i> and protects cells against E46K αâ€synuclein toxicity in cell models of familiar Parkinsonism. Journal of Neurochemistry, 2010, 114, 419-429.	3.9	76
33	Sirtuins: from metabolic regulation to brain aging. Frontiers in Aging Neuroscience, 2013, 5, 36.	3.4	75
34	Striatal neuronal loss correlates with clinical motor impairment in Huntington's disease. Movement Disorders, 2012, 27, 1379-1386.	3.9	71
35	Multifunctional tellurium molecule protects and restores dopaminergic neurons in Parkinson's disease models. FASEB Journal, 2007, 21, 1870-1883.	0.5	66
36	Par-4: An Emerging Pivotal Player in Neuronal Apoptosis and Neurodegenerative Disorders. Journal of Molecular Neuroscience, 1999, 13, 17-30.	2.3	59

#	Article	IF	CITATIONS
37	How does the brain control lifespan?. Ageing Research Reviews, 2002, 1, 155-165.	10.9	58
38	Interrogation of brain miRNA and <scp>mRNA</scp> expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. Journal of Neurochemistry, 2012, 123, 477-490.	3.9	57
39	Characterization of Behavioral, Neuropathological, Brain Metabolic and Key Molecular Changes in zQ175 Knock-In Mouse Model of Huntington's Disease. PLoS ONE, 2016, 11, e0148839.	2.5	55
40	Transgenic Mouse Model Expressing the Caspase 6 Fragment of Mutant Huntingtin. Journal of Neuroscience, 2012, 32, 183-193.	3.6	49
41	Structural MRI detects progressive regional brain atrophy and neuroprotective effects in N171-82Q Huntington's disease mouse model. NeuroImage, 2011, 56, 1027-1034.	4.2	48
42	Post-Translational Modifications (PTMs), Identified on Endogenous Huntingtin, Cluster within Proteolytic Domains between HEAT Repeats. Journal of Proteome Research, 2017, 16, 2692-2708.	3.7	48
43	Brain structure in juvenile-onset Huntington disease. Neurology, 2019, 92, e1939-e1947.	1.1	45
44	Tiagabine is neuroprotective in the N171-82Q and R6/2 mouse models of Huntington's disease. Neurobiology of Disease, 2008, 30, 293-302.	4.4	44
45	Compounds blocking mutant huntingtin toxicity identified using a Huntington's disease neuronal cell model. Neurobiology of Disease, 2005, 20, 500-508.	4.4	41
46	Sirtuin 1 activator <scp>SRT</scp> 2104 protects Huntington's disease mice. Annals of Clinical and Translational Neurology, 2014, 1, 1047-1052.	3.7	40
47	Metformin Protects Cells from Mutant Huntingtin Toxicity Through Activation of AMPK and Modulation of Mitochondrial Dynamics. NeuroMolecular Medicine, 2016, 18, 581-592.	3.4	40
48	Small molecule modulator of protein disulfide isomerase attenuates mutant huntingtin toxicity and inhibits endoplasmic reticulum stress in a mouse model of Huntington's disease. Human Molecular Genetics, 2018, 27, 1545-1555.	2.9	38
49	The anti-dementia drug candidate, (â^')-clausenamide, improves memory impairment through its multi-target effect. , 2016, 162, 179-187.		37
50	Targeting Sirtuin-1 in Huntington's Disease: Rationale and Current Status. CNS Drugs, 2013, 27, 345-352.	5.9	36
51	Metabolism in HD: Still a relevant mechanism?. Movement Disorders, 2014, 29, 1366-1374.	3.9	33
52	2,4 DNP improves motor function, preserves medium spiny neuronal identity, and reduces oxidative stress in a mouse model of Huntington's disease. Experimental Neurology, 2017, 293, 83-90.	4.1	31
53	Spatiotemporal mapping of brain atrophy in mouse models of Huntington's disease using longitudinal in vivo magnetic resonance imaging. Neurolmage, 2012, 60, 2086-2095.	4.2	25
54	Resting-state functional MRI reveals altered brain connectivity and its correlation with motor dysfunction in a mouse model of Huntington's disease. Scientific Reports, 2017, 7, 16742.	3.3	21

#	Article	IF	CITATIONS
55	Huntingtin silencing delays onset and slows progression of Huntington's disease: a biomarker study. Brain, 2021, 144, 3101-3113.	7.6	21
56	Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging. Neurolmage, 2021, 236, 118071.	4.2	20
57	Differential Changes in Functional Connectivity of Striatum-Prefrontal and Striatum-Motor Circuits in Premanifest Huntington's Disease. Neurodegenerative Diseases, 2019, 19, 78-87.	1.4	19
58	Potential Therapeutic Targets for Neurodegenerative Diseases: Lessons Learned from Calorie Restriction. Current Drug Targets, 2010, 11, 1281-1292.	2.1	17
59	Bioactivity Profiling with Parallel Mass Spectrometry Reveals an Assemblage of Green Tea Metabolites Affording Protection against Human Huntingtin and α-Synuclein Toxicity. Journal of Agricultural and Food Chemistry, 2007, 55, 9450-9456.	5.2	16
60	Progress in the Development of Caloric Restriction Mimetic Dietary Supplements. Rejuvenation Research, 2001, 4, 225-232.	0.2	15
61	Mechanisms underlying neurodegeneration in Huntington disease: applications to novel disease-modifying therapies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2017, 144, 15-28.	1.8	12
62	Abnormal Brain Development in Huntington' Disease Is Recapitulated in the zQ175 Knock-In Mouse Model. Cerebral Cortex Communications, 2020, 1, tgaa044.	1.6	11
63	Development of novel bioassays to detect soluble and aggregated Huntingtin proteins on three technology platforms. Brain Communications, 2021, 3, fcaa231.	3.3	11
64	Nemo-like kinase reduces mutant huntingtin levels and mitigates Huntington's disease. Human Molecular Genetics, 2020, 29, 1340-1352.	2.9	10
65	A novel and accurate full-length HTT mouse model for Huntington's disease. ELife, 2022, 11, .	6.0	7
66	Ageâ€dependent cerebrospinal fluidâ€ŧissue water exchange detected by magnetization transfer indirect spin labeling MRI. Magnetic Resonance in Medicine, 2022, 87, 2287-2298.	3.0	6
67	Impaired response of cerebral oxygen metabolism to visual stimulation in Huntington's disease. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1119-1130.	4.3	5
68	Quantitative cerebrovascular reactivity <scp>MRI</scp> in mice using acetazolamide challenge. Magnetic Resonance in Medicine, 2022, 88, 2233-2241.	3.0	5
69	Cellular and molecular mechanisms whereby dietary restriction extends healthspan: a beneficial type of stress. Advances in Cell Aging and Gerontology, 2003, 14, 87-103.	0.1	4
70	Mutant G2019S-LRRK2 Induces Abnormalities in Arteriolar Cerebral Blood Volume in Mouse Brains: An MRI Study. Neurodegenerative Diseases, 2020, 20, 65-72.	1.4	1
71	Transcriptional Assessment of Striatal mRNAs as Valid Biomarkers of Disease Progression in Three Mouse Models of Huntington's Disease. Journal of Huntington's Disease, 2020, 9, 13-31.	1.9	1