Frédéric Chevallier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4467596/publications.pdf

Version: 2024-02-01

237 papers

35,555 citations

70 h-index

11651

³⁹¹⁵ 177

385 all docs 385 docs citations

385 times ranked

30438 citing authors

g-index

#	Article	IF	Citations
1	The ERAâ€40 reâ€analysis. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 2961-3012.	2.7	6,198
2	Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 2005, 437, 529-533.	27.8	3,245
3	Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6, 813-823.	12.9	1,649
4	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	9.9	1,477
5	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	9.9	1,167
6	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	9.9	1,159
7	Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 2014, 509, 600-603.	27.8	1,054
8	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	9.9	905
9	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	9.9	801
10	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	9.9	663
11	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	9.9	616
12	Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 2015, 12, 653-679.	3.3	587
13	Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501, 88-92.	27.8	482
14	Global carbon budget 2014. Earth System Science Data, 2015, 7, 47-85.	9.9	463
15	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	12.8	420
16	Global atmospheric carbon budget: results from an ensemble of atmospheric CO ₂ inversions. Biogeosciences, 2013, 10, 6699-6720.	3.3	356
17	Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 2020, 17, 1343-1365.	3.3	323
18	Contribution of the Orbiting Carbon Observatory to the estimation of CO2sources and sinks: Theoretical study in a variational data assimilation framework. Journal of Geophysical Research, 2007, 112, .	3.3	301

#	Article	IF	Citations
19	CO ₂ surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. Journal of Geophysical Research, 2010, 115, .	3.3	276
20	Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 2019, 233, 111383.	11.0	276
21	Inferring CO2sources and sinks from satellite observations: Method and application to TOVS data. Journal of Geophysical Research, 2005, 110, .	3.3	269
22	A Neural Network Approach for a Fast and Accurate Computation of a Longwave Radiative Budget. Journal of Applied Meteorology and Climatology, 1998, 37, 1385-1397.	1.7	258
23	TOWARD A MONITORING AND FORECASTING SYSTEM FOR ATMOSPHERIC COMPOSITION. Bulletin of the American Meteorological Society, 2008, 89, 1147-1164.	3.3	253
24	Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics, 2011, 11, 3689-3700.	4.9	252
25	Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 2014, 11, 3547-3602.	3.3	189
26	Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 2018, 11, 6539-6576.	3.1	188
27	Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 2017, 7, 359-363.	18.8	183
28	An attempt at estimating Paris area CO ₂ emissions from atmospheric concentration measurements. Atmospheric Chemistry and Physics, 2015, 15, 1707-1724.	4.9	169
29	An improved general fast radiative transfer model for the assimilation of radiance observations. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 153-173.	2.7	166
30	Injection height of biomass burning aerosols as seen from a spaceborne lidar. Geophysical Research Letters, 2007, 34, .	4.0	166
31	Global trends in carbon sinks and their relationships with CO2 and temperature. Nature Climate Change, 2019, 9, 73-79.	18.8	163
32	A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences, 2014, 11, 381-407.	3.3	162
33	Assimilation and Modeling of the Atmospheric Hydrological Cycle in the ECMWF Forecasting System. Bulletin of the American Meteorological Society, 2005, 86, 387-402.	3.3	143
34	Satellite-based estimates of decline and rebound in China's CO ₂ emissions during COVID-19 pandemic. Science Advances, 2020, 6, .	10.3	136
35	An assessment of the Atlantic and Arctic sea–air CO ₂ fluxes, 1990–2009. Biogeosciences, 2013, 10, 607-627.	3.3	131
36	Toward robust and consistent regional CO ₂ flux estimates from in situ and spaceborne measurements of atmospheric CO ₂ . Geophysical Research Letters, 2014, 41, 1065-1070.	4.0	126

#	Article	IF	Citations
37	Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature, 2019, 568, 221-225.	27.8	124
38	Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production. Scientific Data, 2020, 7, 392.	5.3	115
39	Atmospheric inversions for estimating CO2 fluxes: methods and perspectives. Climatic Change, 2010, 103, 69-92.	3.6	113
40	The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmospheric Chemistry and Physics, 2019, 19, 9797-9831.	4.9	113
41	Evaluation of various observing systems for the global monitoring of CO ₂ surface fluxes. Atmospheric Chemistry and Physics, 2010, 10, 10503-10520.	4.9	112
42	The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets. Remote Sensing of Environment, 2015, 162, 344-362.	11.0	112
43	Fourâ€dimensional data assimilation of atmospheric CO ₂ using AIRS observations. Journal of Geophysical Research, 2009, 114, .	3.3	110
44	Multi-species inversion of CH ₄ , CO and H ₂ emissions from surface measurements. Atmospheric Chemistry and Physics, 2009, 9, 5281-5297.	4.9	109
45	An intercomparison of inverse models for estimating sources and sinks of CO ₂ using GOSAT measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5253-5266.	3.3	105
46	Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels. Journal of Geophysical Research, 2001, 106, 24017-24031.	3.3	104
47	Multiple-scattering microwave radiative transfer for data assimilation applications. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1259-1281.	2.7	104
48	The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences, 2012, 9, 3571-3586.	3.3	103
49	The importance of transport model uncertainties for the estimation of CO ₂ sources and sinks using satellite measurements. Atmospheric Chemistry and Physics, 2010, 10, 9981-9992.	4.9	98
50	Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth System Science Data, 2019, 11, 1411-1436.	9.9	96
51	Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environmental Research Letters, 2018, 13, 044007.	5.2	95
52	Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing, 2018, 10, 2038.	4.0	95
53	Quantifying the Impact of Atmospheric Transport Uncertainty on CO ₂ Surface Flux Estimates. Global Biogeochemical Cycles, 2019, 33, 484-500.	4.9	95
54	Constraining a global ecosystem model with multi-site eddy-covariance data. Biogeosciences, 2012, 9, 3757-3776.	3.3	94

#	Article	IF	CITATIONS
55	The formaldehyde budget as seen by a global-scale multi-constraint and multi-species inversion system. Atmospheric Chemistry and Physics, 2012, 12, 6699-6721.	4.9	93
56	Top–down assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 2016, 7, 10724.	12.8	93
57	Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model. Atmospheric Chemistry and Physics, 2012, 12, 4585-4606.	4.9	92
58	Assimilation of global MODIS leaf area index retrievals within a terrestrial biosphere model. Geophysical Research Letters, 2007, 34, .	4.0	91
59	Mesoscale inversion: first results from the CERES campaign with synthetic data. Atmospheric Chemistry and Physics, 2008, 8, 3459-3471.	4.9	91
60	On the consistency between global and regional methane emissions inferred from SCIAMACHY, TANSO-FTS, IASI and surface measurements. Atmospheric Chemistry and Physics, 2014, 14, 577-592.	4.9	91
61	Use of a neural-network-based long-wave radiative-transfer scheme in the ECMWF atmospheric model. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 761-776.	2.7	90
62	MERLIN: A French-German Space Lidar Mission Dedicated to Atmospheric Methane. Remote Sensing, 2017, 9, 1052.	4.0	88
63	Ten years of CO emissions as seen from Measurements of Pollution in the Troposphere (MOPITT). Journal of Geophysical Research, 2011, 116, .	3.3	87
64	The first 1-year-long estimate of the Paris region fossil fuel CO ₂ emissions based on atmospheric inversion. Atmospheric Chemistry and Physics, 2016, 16, 14703-14726.	4.9	87
65	Characteristics of the TOVS Pathfinder Path-B Dataset. Bulletin of the American Meteorological Society, 1999, 80, 2679-2701.	3.3	86
66	On the assignment of prior errors in Bayesian inversions of CO2surface fluxes. Geophysical Research Letters, 2006, 33, .	4.0	86
67	Global CO ₂ fluxes inferred from surface air-sample measurements and from TCCON retrievals of the CO ₂ total column. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	85
68	The contribution of AIRS data to the estimation of CO2sources and sinks. Geophysical Research Letters, 2005, 32, .	4.0	84
69	Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Scientific Reports, 2016, 6, 37747.	3.3	83
70	Structure of the transport uncertainty in mesoscale inversions of CO ₂ sources and sinks using ensemble model simulations. Biogeosciences, 2009, 6, 1089-1102.	3.3	82
71	Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nature Communications, 2019, 10, 3344.	12.8	81
72	On the accuracy of the CO ₂ surface fluxes to be estimated from the GOSAT observations. Geophysical Research Letters, 2009, 36, .	4.0	80

#	Article	IF	Citations
73	Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON. Atmospheric Measurement Techniques, 2016, 9, 683-709.	3.1	80
74	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 96, ES1-ES32.	3.3	78
7 5	Global atmospheric CO ₂ inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences, 2019, 16, 117-134.	3.3	77
76	TIGR-like atmospheric-profile databases for accurate radiative-flux computation. Quarterly Journal of the Royal Meteorological Society, 2000, 126, 777-785.	2.7	75
77	Global inverse modeling of CH ₄ sources and sinks: an overview of methods. Atmospheric Chemistry and Physics, 2017, 17, 235-256.	4.9	75
78	Forecasting global atmospheric CO ₂ . Atmospheric Chemistry and Physics, 2014, 14, 11959-11983.	4.9	74
79	European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nature Communications, 2016, 7, 10315.	12.8	74
80	Can we reconcile atmospheric estimates of the Northern terrestrial carbon sink with land-based accounting?. Current Opinion in Environmental Sustainability, 2010, 2, 225-230.	6.3	73
81	Some neural network applications in environmental sciences. Part II: advancing computational efficiency of environmental numerical models. Neural Networks, 2003, 16, 335-348.	5.9	72
82	Impact of correlated observation errors on inverted CO ₂ surface fluxes from OCO measurements. Geophysical Research Letters, 2007, 34, .	4.0	72
83	On the impact of transport model errors for the estimation of CO ₂ surface fluxes from GOSAT observations. Geophysical Research Letters, 2010, 37, .	4.0	72
84	Increasing forest fire emissions despite the decline in global burned area. Science Advances, 2021, 7, eabh2646.	10.3	71
85	The impact of transport model differences on CO ₂ surface flux estimates from OCO-2 retrievals of column average CO ₂ . Atmospheric Chemistry and Physics, 2018, 18, 7189-7215.	4.9	70
86	Decadal trends in global CO emissions as seen by MOPITT. Atmospheric Chemistry and Physics, 2015, 15, 13433-13451.	4.9	69
87	Atmospheric constraints on the methane emissions from the East Siberian Shelf. Atmospheric Chemistry and Physics, 2016, 16, 4147-4157.	4.9	69
88	Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling. Atmospheric Chemistry and Physics, 2013, 13, 9917-9937.	4.9	68
89	A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle. Geoscientific Model Development, 2016, 9, 3321-3346.	3. 6	67
90	The size of the land carbon sink in China. Nature, 2022, 603, E7-E9.	27.8	67

#	Article	IF	Citations
91	Estimation of global black carbon direct radiative forcing and its uncertainty constrained by observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 5948-5971.	3.3	66
92	Assimilation of POLDER aerosol optical thickness into the LMDz-INCA model: Implications for the Arctic aerosol burden. Journal of Geophysical Research, 2007, 112, .	3.3	64
93	Assessing 5 years of GOSAT Proxy XCH ₄ data and associated uncertainties. Atmospheric Measurement Techniques, 2015, 8, 4785-4801.	3.1	64
94	Observing carbon dioxide emissions over China's cities and industrial areas with the Orbiting Carbon Observatory-2. Atmospheric Chemistry and Physics, 2020, 20, 8501-8510.	4.9	64
95	Estimating atmospheric CO2from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Methodology and first results. Journal of Geophysical Research, 2004, 109, .	3.3	63
96	Does GOSAT capture the true seasonal cycle of carbon dioxide?. Atmospheric Chemistry and Physics, 2015, 15, 13023-13040.	4.9	63
97	Impact of the 2015/2016 El Niñ0 on the terrestrial carbon cycle constrained by bottom-up and top-down approaches. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170304.	4.0	63
98	Atmospheric deposition, CO2, and change in the land carbon sink. Scientific Reports, 2017, 7, 9632.	3.3	62
99	Regional inversion of CO ₂ ecosystem fluxes from atmospheric measurements: reliability of the uncertainty estimates. Atmospheric Chemistry and Physics, 2013, 13, 9039-9056.	4.9	60
100	Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Ni $\tilde{A}\pm 0$. Geophysical Research Letters, 2016, 43, 10,472.	4.0	60
101	Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion. Atmospheric Chemistry and Physics, 2014, 14, 1801-1817.	4.9	59
102	Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmospheric Chemistry and Physics, 2019, 19, 14233-14251.	4.9	59
103	Sources of Uncertainty in Regional and Global Terrestrial CO ₂ Exchange Estimates. Global Biogeochemical Cycles, 2020, 34, e2019GB006393.	4.9	59
104	Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth System Science Data, 2022, 14, 1639-1675.	9.9	58
105	The capability of 4D-Var systems to assimilate cloud-affected satellite infrared radiances. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 917-932.	2.7	57
106	A European summertime CO2biogenic flux inversion at mesoscale from continuous in situ mixing ratio measurements. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	57
107	Optimal representation of source-sink fluxes for mesoscale carbon dioxide inversion with synthetic data. Journal of Geophysical Research, 2011, 116, .	3.3	56
108	Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories $1959 \hat{a} \in (2018. \text{ Scientific Data}, 2021, 8, 2.$	5.3	56

#	Article	IF	Citations
109	African CO emissions between years 2000 and 2006 as estimated from MOPITT observations. Biogeosciences, 2009, 6, 103-111.	3.3	54
110	Consistent assimilation of multiple data streams in a carbon cycle data assimilation system. Geoscientific Model Development, 2016, 9, 3569-3588.	3.6	54
111	Model Clouds as Seen from Space: Comparison with Geostationary Imagery in the 11-νm Window Channel. Monthly Weather Review, 2002, 130, 712-722.	1.4	53
112	The European land and inland water CO ₂ , CO, CH ₄ and N ₂ O balance between 2001 and 2005. Biogeosciences, 2012, 9, 3357-3380.	3.3	53
113	A decade of GOSAT Proxy satellite CH ₄ observations. Earth System Science Data, 2020, 12, 3383-3412.	9.9	53
114	AIRSâ€based versus flaskâ€based estimation of carbon surface fluxes. Journal of Geophysical Research, 2009, 114, .	3.3	52
115	Assimilation of atmospheric methane products into the MACC-II system: from SCIAMACHY to TANSO and IASI. Atmospheric Chemistry and Physics, 2014, 14, 6139-6158.	4.9	52
116	Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set. Remote Sensing of Environment, 2017, 203, 276-295.	11.0	52
117	Variational retrieval of temperature and humidity profiles using rain rates versus microwave brightness temperatures. Quarterly Journal of the Royal Meteorological Society, 2004, 130, 827-852.	2.7	49
118	TransCom N ₂ O model inter-comparison – Part 2: Atmospheric inversion estimates of N ₂ O emissions. Atmospheric Chemistry and Physics, 2014, 14, 6177-6194.	4.9	49
119	Modelling CO ₂ weather – why horizontal resolution matters. Atmospheric Chemistry and Physics, 2019, 19, 7347-7376.	4.9	49
120	On the statistical optimality of CO ₂ atmospheric inversions assimilating CO ₂ column retrievals. Atmospheric Chemistry and Physics, 2015, 15, 11133-11145.	4.9	48
121	Benchmarking the seasonal cycle of CO ₂ fluxes simulated by terrestrial ecosystem models. Global Biogeochemical Cycles, 2015, 29, 46-64.	4.9	48
122	On the causes of trends in the seasonal amplitude of atmospheric <scp>CO</scp> ₂ . Global Change Biology, 2018, 24, 608-616.	9.5	48
123	A seamless ensemble-based reconstruction of surface ocean <i>p</i> CO ₂ and air–sea CO ₂ fluxes over the global coastal and open oceans. Biogeosciences, 2022, 19, 1087-1109.	3.3	48
124	What eddyâ€covariance measurements tell us about prior land flux errors in CO ₂ â€flux inversion schemes. Global Biogeochemical Cycles, 2012, 26, .	4.9	47
125	Atmospheric measurements of ratios between CO ₂ and co-emitted species from traffic: a tunnel study in the Paris megacity. Atmospheric Chemistry and Physics, 2014, 14, 12871-12882.	4.9	47
126	Copernicus Marine Service Ocean State Report, Issue 4. Journal of Operational Oceanography, 2020, 13, S1-S172.	1.2	47

#	Article	IF	CITATIONS
127	Model Clouds over Oceans as Seen from Space: Comparison with HIRS/2 and MSU Radiances. Journal of Climate, 2001, 14, 4216-4229.	3.2	46
128	Bridging the gap between atmospheric concentrations and local ecosystem measurements. Geophysical Research Letters, 2009, 36, .	4.0	46
129	AMSU-A Land Surface Emissivity Estimation for Numerical Weather Prediction Assimilation Schemes. Journal of Applied Meteorology and Climatology, 2005, 44, 416-426.	1.7	45
130	Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations. Atmospheric Chemistry and Physics, 2015, 15, 9765-9780.	4.9	45
131	What would dense atmospheric observation networks bring to the quantification of city CO ₂ emissions?. Atmospheric Chemistry and Physics, 2016, 16, 7743-7771.	4.9	45
132	The potential of satellite spectro-imagery for monitoring CO ₂ emissions from large cities. Atmospheric Measurement Techniques, 2018, 11, 681-708.	3.1	45
133	Age of air as a diagnostic for transport timescales in global models. Geoscientific Model Development, 2018, 11, 3109-3130.	3.6	44
134	Improving Estimates of Gross Primary Productivity by Assimilating Solarâ€Induced Fluorescence Satellite Retrievals in a Terrestrial Biosphere Model Using a Processâ€Based SIF Model. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3281-3306.	3.0	44
135	Strong Southern Ocean carbon uptake evident in airborne observations. Science, 2021, 374, 1275-1280.	12.6	44
136	Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) versionÂ9 and in situ data and comparison to OCO-2 versionÂ7. Atmospheric Chemistry and Physics, 2022, 22, 1097-1130.	4.9	44
137	What can we learn from European continuous atmospheric CO ₂ measurements to quantify regional fluxes – Part 2: Sensitivity of flux accuracy to inverse setup. Atmospheric Chemistry and Physics, 2010, 10, 3119-3129.	4.9	43
138	Model–data fusion across ecosystems: from multisite optimizations to global simulations. Geoscientific Model Development, 2014, 7, 2581-2597.	3.6	43
139	State of the science in reconciling topâ€down and bottomâ€up approaches for terrestrial CO ₂ budget. Global Change Biology, 2020, 26, 1068-1084.	9.5	43
140	On the capability of IASI measurements to inform about CO surface emissions. Atmospheric Chemistry and Physics, 2009, 9, 8735-8743.	4.9	42
141	Bayesian design of control space for optimal assimilation of observations. Part I: Consistent multiscale formalism. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1340-1356.	2.7	42
142	Evaluation of a Global Vegetation Model using time series of satellite vegetation indices. Geoscientific Model Development, 2011, 4, 1103-1114.	3.6	42
143	Linearized radiation and cloud schemes in the ECMWF model: Development and evaluation. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1505-1527.	2.7	42
144	Atmospheric inversions for estimating CO2 fluxes: methods and perspectives. , 2010, , 69-92.		41

#	Article	lF	CITATIONS
145	A recent build-up of atmospheric CO ₂ over Europe. Part 1: observed signals and possible explanations. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 1.	1.6	40
146	Diurnal, synoptic and seasonal variability of atmospheric CO ₂ in the Paris megacity area. Atmospheric Chemistry and Physics, 2018, 18, 3335-3362.	4.9	40
147	Comparing CO2retrieved from Atmospheric Infrared Sounder with model predictions: Implications for constraining surface fluxes and lower-to-upper troposphere transport. Journal of Geophysical Research, 2006, 111, .	3.3	39
148	Quantifying the model structural error in carbon cycle data assimilation systems. Geoscientific Model Development, 2013, 6, 45-55.	3.6	38
149	Ability of the 4-D-Var analysis of the GOSAT BESD XCO ₂ retrievals to characterize atmospheric CO ₂ at large and synoptic scales. Atmospheric Chemistry and Physics, 2016, 16, 1653-1671.	4.9	38
150	Towards better error statistics for atmospheric inversions of methane surface fluxes. Atmospheric Chemistry and Physics, 2013, 13, 7115-7132.	4.9	37
151	Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170302.	4.0	37
152	A Parameterization of the Microwave Land Surface Emissivity Between 19 and 100 GHz, Anchored to Satellite-Derived Estimates. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46, 344-352.	6.3	36
153	XCO ₂ in an emission hot-spot region: the COCCON Paris campaign 2015. Atmospheric Chemistry and Physics, 2019, 19, 3271-3285.	4.9	35
154	Model Rain and Clouds over Oceans: Comparison with SSM/I Observations. Monthly Weather Review, 2003, 131, 1240-1255.	1.4	35
155	Joint assimilation of eddy covariance flux measurements and FAPAR products over temperate forests within a processâ€oriented biosphere model. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1839-1857.	3.0	34
156	Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geoscientific Model Development, 2022, 15, 1289-1316.	3.6	34
157	How Much CO2 Is Taken Up by the European Terrestrial Biosphere?. Bulletin of the American Meteorological Society, 2017, 98, 665-671.	3.3	33
158	Development of a variational flux inversion system (INVICAT v1.0) using the TOMCAT chemical transport model. Geoscientific Model Development, 2014, 7, 2485-2500.	3.6	32
159	Inverse modeling of GOSAT-retrieved ratios of total column CH ₄ for 2009 and 2010. Atmospheric Chemistry and Physics, 2016, 16, 5043-5062.	4.9	32
160	Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion. Biogeosciences, 2015, 12, 5393-5414.	3.3	31
161	On the impact of recent developments of the LMDz atmospheric general circulation model on the simulation of CO ₂ transport. Geoscientific Model Development, 2018, 11, 4489-4513.	3.6	31
162	Fundamentals of data assimilation applied to biogeochemistry. Atmospheric Chemistry and Physics, 2019, 19, 13911-13932.	4.9	31

#	Article	IF	Citations
163	Local Anomalies in the Columnâ€Averaged Dry Air Mole Fractions of Carbon Dioxide Across the Globe During the First Months of the Coronavirus Recession. Geophysical Research Letters, 2020, 47, e2020GL090244.	4.0	31
164	Variational retrieval of cloud profile from ATOVS observations. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 2511-2525.	2.7	30
165	Evaluating the potential of large-scale simulations to predict carbon fluxes of terrestrial ecosystems over a European Eddy Covariance network. Biogeosciences, 2014, 11, 2661-2678.	3.3	30
166	Analysis of the potential of near-ground measurements of CO ₂ and CH ₄ in London, UK, for the monitoring of city-scale emissions using an atmospheric transport model. Atmospheric Chemistry and Physics, 2016, 16, 6735-6756.	4.9	30
167	Benchmarking carbon fluxes of the ISIMIP2a biome models. Environmental Research Letters, 2017, 12, 045002.	5.2	30
168	Contrasting effects of CO& t;sub>2& t; sub> fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO& t;sub>2& t; sub> exchange. Atmospheric Chemistry and Physics, 2019, 19, 12361-12375.	4.9	30
169	Evaluation of the Jacobians of Infrared Radiation Models for Variational Data Assimilation. Journal of Applied Meteorology and Climatology, 2001, 40, 1445-1461.	1.7	29
170	A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion. Atmospheric Chemistry and Physics, 2011, 11, 3375-3392.	4.9	29
171	Atmospheric inversion of SO ₂ and primary aerosol emissions for the year 2010. Atmospheric Chemistry and Physics, 2013, 13, 6555-6573.	4.9	29
172	Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications, 2018, 9, 1154.	12.8	28
173	Variational retrieval of rain profiles from spaceborne passive microwave radiance observations. Journal of Geophysical Research, 2003, 108, .	3.3	27
174	A biogenic CO ₂ flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO ₂ analyses and forecasts. Atmospheric Chemistry and Physics, 2016, 16, 10399-10418.	4.9	27
175	Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO ₂ seasonal amplification. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21079-21087.	7.1	27
176	On the parallelization of atmospheric inversions of CO ₂ surface fluxes within a variational framework. Geoscientific Model Development, 2013, 6, 783-790.	3.6	26
177	Using airborne HIAPER Pole-to-Pole Observations (HIPPO) to evaluate model and remote sensing estimates of atmospheric carbon dioxide. Atmospheric Chemistry and Physics, 2016, 16, 7867-7878.	4.9	26
178	Impact of the choice of the satellite aerosol optical depth product in a sub-regional dust emission inversion. Atmospheric Chemistry and Physics, 2017, 17, 7111-7126.	4.9	26
179	On the Role of the Flaming to Smoldering Transition in the Seasonal Cycle of African Fire Emissions. Geophysical Research Letters, 2018, 45, 11,998.	4.0	25
180	Comparison of Model Fluxes with Surface and Top-of-the-Atmosphere Observations. Monthly Weather Review, 2000, 128, 3839-3852.	1.4	24

#	Article	IF	Citations
181	The seasonal cycle amplitude of total column CO2: Factors behind the model-observation mismatch. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	24
182	Near-real-time global gridded daily CO2 emissions. Innovation(China), 2022, 3, 100182.	9.1	24
183	Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions. Tellus, Series B: Chemical and Physical Meteorology, 2022, 65, 20894.	1.6	23
184	Error Budget of the MEthane Remote Lidar missioN and Its Impact on the Uncertainties of the Global Methane Budget. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,766.	3.3	23
185	Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia. Atmospheric Chemistry and Physics, 2021, 21, 12631-12647.	4.9	23
186	Large CO ₂ Emitters as Seen From Satellite: Comparison to a Gridded Global Emission Inventory. Geophysical Research Letters, 2022, 49, .	4.0	23
187	Biofuel burning and human respiration bias on satellite estimates of fossil fuel CO ₂ emissions. Environmental Research Letters, 2020, 15, 074036.	5.2	22
188	Objectified quantification of uncertainties in Bayesian atmospheric inversions. Geoscientific Model Development, 2015, 8, 1525-1546.	3.6	21
189	Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015. Atmospheric Chemistry and Physics, 2017, 17, 13903-13919.	4.9	21
190	Changes in the Response of the Northern Hemisphere Carbon Uptake to Temperature Over the Last Three Decades. Geophysical Research Letters, 2018, 45, 4371-4380.	4.0	21
191	Subregional inversion of North African dust sources. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8549-8566.	3.3	20
192	TransCom satellite intercomparison experiment: Construction of a bias corrected atmospheric CO ₂ climatology. Journal of Geophysical Research, 2011, 116, .	3.3	19
193	Error statistics of Bayesian CO ₂ flux inversion schemes as seen from GOSAT. Geophysical Research Letters, 2013, 40, 1252-1256.	4.0	19
194	State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales. Ecological Modelling, 2012, 246, 11-25.	2.5	18
195	Exploiting stagnant conditions to derive robust emission ratio estimates for CO ₂ , CO and volatile organic compounds in Paris. Atmospheric Chemistry and Physics, 2016, 16, 15653-15664.	4.9	18
196	Simplified aerosol modeling for variational data assimilation. Geoscientific Model Development, 2009, 2, 213-229.	3.6	17
197	Potential of European & amp;lt;sup>CO ₂ observation network to estimate the fossil fuel CO ₂ emissions via atmospheric inversions. Atmospheric Chemistry and Physics. 2018, 18, 4229-4250.	4.9	17
198	An 11-year record of XCO ₂ estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. Earth System Science Data, 2022, 14, 325-360.	9.9	17

#	Article	lF	CITATIONS
199	Plant gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling. Atmospheric Chemistry and Physics, 2022, 22, 2525-2552.	4.9	17
200	Quantifying the constraint of biospheric process parameters by CO ₂ concentration and flux measurement networks through a carbon cycle data assimilation system. Atmospheric Chemistry and Physics, 2013, 13, 10555-10572.	4.9	16
201	MERLIN (Methane Remote Sensing Lidar Mission): an Overview. EPJ Web of Conferences, 2016, 119, 26001.	0.3	16
202	Estimation of observation errors for large-scale atmospheric inversion of CO2 emissions from fossil fuel combustion. Tellus, Series B: Chemical and Physical Meteorology, 2017, 69, 1325723.	1.6	16
203	Linearized radiation and cloud schemes in the ECMWF model: Development and evaluation. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1505-1527.	2.7	15
204	Iconic CO ₂ Time Series at Risk. Science, 2012, 337, 1038-1040.	12.6	15
205	Interannual variability in tropospheric nitrous oxide. Geophysical Research Letters, 2013, 40, 4426-4431.	4.0	15
206	HCFCâ€22 emissions at global and regional scales between 1995 and 2010: Trends and variability. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7379-7388.	3.3	15
207	Increase in HFCâ€134a emissions in response to the success of the Montreal Protocol. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,728.	3.3	15
208	The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies. Geoscientific Model Development, 2021, 14, 5331-5354.	3.6	15
209	On the potential of the ICOS atmospheric CO ₂ measurement network for estimating the biogenic CO ₂ budget of Europe. Atmospheric Chemistry and Physics, 2015, 15, 12765-12787.	4.9	14
210	Causes of slowingâ€down seasonal CO ₂ amplitude at Mauna Loa. Global Change Biology, 2020, 26, 4462-4477.	9.5	14
211	Diagnostic methods for atmospheric inversions of long-lived greenhouse gases. Atmospheric Chemistry and Physics, 2017, 17, 7405-7421.	4.9	13
212	The CO2 Human Emissions (CHE) Project: First Steps Towards a European Operational Capacity to Monitor Anthropogenic CO2 Emissions. Frontiers in Remote Sensing, 2021, 2, .	3.5	13
213	Impact of the atmospheric sink and vertical mixing on nitrous oxide fluxes estimated using inversion methods. Journal of Geophysical Research, 2011, 116, .	3.3	12
214	Probabilistic global maps of the CO 2 column at daily and monthly scales from sparse satellite measurements. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7614-7629.	3.3	12
215	Fluxes of Carbon Dioxide From Managed Ecosystems Estimated by National Inventories Compared to Atmospheric Inverse Modeling. Geophysical Research Letters, 2021, 48, e2021GL093565.	4.0	12
216	XCO ₂ estimates from the OCO-2 measurements using a neural network approach. Atmospheric Measurement Techniques, 2021, 14, 117-132.	3.1	11

#	Article	IF	Citations
217	On the variation of regional CO ₂ exchange over temperate and boreal North America. Global Biogeochemical Cycles, 2013, 27, 991-1000.	4.9	10
218	Retrieving the Clear-Sky Vertical Longwave Radiative Budget from TOVS: Comparison of a Neural Network–Based Retrieval and a Method UsingGeophysical Parameters. Journal of Applied Meteorology and Climatology, 2000, 39, 1527-1543.	1.7	8
219	On the ability of a global atmospheric inversion to constrain variations of CO ₂ fluxes over Amazonia. Atmospheric Chemistry and Physics, 2015, 15, 8423-8438.	4.9	8
220	High Clouds over Oceans in the ECMWF 15- and 45-Yr Reanalyses. Journal of Climate, 2005, 18, 2647-2661.	3.2	7
221	Can we detect regional methane anomalies? A comparison between three observing systems. Atmospheric Chemistry and Physics, 2016, 16, 9089-9108.	4.9	7
222	Comment on "Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño― Science, 2018, 362, .	12.6	7
223	Siberian 2020 heatwave increased spring CO ₂ uptake but not annual CO ₂ uptake. Environmental Research Letters, 2021, 16, 124030.	5.2	7
224	Are Landâ€Use Change Emissions in Southeast Asia Decreasing or Increasing?. Global Biogeochemical Cycles, 2022, 36, .	4.9	7
225	Autoregressive models for maxima and their applications to CH ₄ and N ₂ O. Environmetrics, 2010, 21, 189-207.	1.4	6
226	Decadal variability in land carbon sink efficiency. Carbon Balance and Management, 2021, 16, 15.	3.2	6
227	Unusual characteristics of the carbon cycle during the 2015â°'2016 El Niño. Global Change Biology, 2021, 27, 3798-3809.	9.5	6
228	Comments on "New Approach to Calculation of Atmospheric Model Physics: Accurate and Fast Neural Network Emulation of Longwave Radiation in a Climate Model― Monthly Weather Review, 2005, 133, 3721-3723.	1.4	5
229	Multiâ€Season Evaluation of CO ₂ Weather in OCOâ€2 MIP Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
230	Regional and Seasonal Variations of the Clear Sky Atmospheric Longwave Cooling over Tropical Oceans. Journal of Climate, 2000, 13, 2863-2875.	3.2	4
231	A local- to national-scale inverse modeling system to assess the potential of spaceborne CO ₂ measurements for the monitoring of anthropogenic emissions. Atmospheric Measurement Techniques, 2021, 14, 403-433.	3.1	3
232	Global nature run data with realistic high-resolution carbon weather for the year of the Paris Agreement. Scientific Data, 2022, 9, 160.	5.3	3
233	A new generation of radiative transfer models for climate studies based on neural networks. , 0, , .		1
234	The greenhouse gas project of ESA's climate change initiative (GHG-CCI): overview, achievements and future plans. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 165-172.	0.2	1

#	Article	IF	CITATIONS
235	Corrigendum to "Source attribution of the changes in atmospheric methane for 2006â€"2008" published in Atmos. Chem. Phys., 11, 3689â€"3700, 2011. Atmospheric Chemistry and Physics, 2012, 12, 9381-9382.	d 4.9	O
236	The European Centre for Medium-Range Weather Forecasts Global Rainfall Data Assimilation Experimentation., 2007,, 447-457.		O
237	Top-down approaches. , 2022, , 87-155.		O