
## Annamaria Fra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4467549/publications.pdf Version: 2024-02-01



ΔΝΝΑΜΑΡΙΑ ΕΡΑ

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin Proceedings of the<br>National Academy of Sciences of the United States of America, 1995, 92, 8655-8659.                                           | 3.3  | 555       |
| 2  | Caveolin-1 and -2 in the Exocytic Pathway of MDCK Cells. Journal of Cell Biology, 1998, 140, 795-806.                                                                                                                           | 2.3  | 283       |
| 3  | Developmental regulation of IgM secretion: The role of the carboxy-terminal cysteine. Cell, 1990, 60, 781-790.                                                                                                                  | 13.5 | 248       |
| 4  | Cutting Edge: Scavenging of Inflammatory CC Chemokines by the Promiscuous Putatively Silent<br>Chemokine Receptor D6. Journal of Immunology, 2003, 170, 2279-2282.                                                              | 0.4  | 181       |
| 5  | A photo-reactive derivative of ganglioside GM1 specifically cross-links VIP21-caveolin on the cell surface. FEBS Letters, 1995, 375, 11-14.                                                                                     | 1.3  | 169       |
| 6  | Progressively impaired proteasomal capacity during terminal plasma cell differentiation. EMBO<br>Journal, 2006, 25, 1104-1113.                                                                                                  | 3.5  | 139       |
| 7  | Differential Recognition and Scavenging of Native and Truncated Macrophage-Derived Chemokine<br>(Macrophage-Derived Chemokine/CC Chemokine Ligand 22) by the D6 Decoy Receptor. Journal of<br>Immunology, 2004, 172, 4972-4976. | 0.4  | 132       |
| 8  | Quality control of ER synthesized proteins: an exposed thiol group as a three-way switch mediating assembly, retention and degradation EMBO Journal, 1993, 12, 4755-4761.                                                       | 3.5  | 124       |
| 9  | Degradation of unassembled soluble Ig subunits by cytosolic proteasomes: evidence that retrotranslocation and degradation are coupled events. FASEB Journal, 2000, 14, 769-778.                                                 | 0.2  | 96        |
| 10 | Cysteines as Redox Molecular Switches and Targets of Disease. Frontiers in Molecular Neuroscience,<br>2017, 10, 167.                                                                                                            | 1.4  | 95        |
| 11 | Identification and characterisation of eight novel SERPINA1 Null mutations. Orphanet Journal of Rare Diseases, 2014, 9, 172.                                                                                                    | 1.2  | 60        |
| 12 | Generation and characterization of a mouse lymphatic endothelial cell line. Cell and Tissue Research, 2006, 325, 91-100.                                                                                                        | 1.5  | 56        |
| 13 | CHOP-independent apoptosis and pathway-selective induction of the UPR in developing plasma cells.<br>Molecular Immunology, 2010, 47, 1356-1365.                                                                                 | 1.0  | 56        |
| 14 | Three New Alpha1-Antitrypsin Deficiency Variants Help to Define a C-Terminal Region Regulating<br>Conformational Change and Polymerization. PLoS ONE, 2012, 7, e38405.                                                          | 1.1  | 43        |
| 15 | The efficiency of cysteine-mediated intracellular retention determines the differential fate of secretory IgA and IgM in B and plasma cells. European Journal of Immunology, 1994, 24, 2477-2482.                               | 1.6  | 42        |
| 16 | Polymers of Z α <sub>1</sub> -antitrypsin are secreted in cell models of disease. European Respiratory<br>Journal, 2016, 47, 1005-1009.                                                                                         | 3.1  | 41        |
| 17 | Exposed Thiols Confer Localization in the Endoplasmic Reticulum by Retention Rather than Retrieval.<br>Journal of Biological Chemistry, 1996, 271, 26138-26142.                                                                 | 1.6  | 40        |
| 18 | Mechanisms of interleukin-6 protection against ischemia–reperfusion injury in rat liver. Cytokine,<br>2006, 34, 131-142.                                                                                                        | 1.4  | 37        |

Annamaria Fra

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Real-world clinical applicability of pathogenicity predictors assessed on <i>SERPINA1</i> mutations in alpha-1-antitrypsin deficiency. Human Mutation, 2018, 39, 1203-1213.           | 1.1 | 36        |
| 20 | The Endoplasmic Reticulum as a Site of Protein Degradation. Sub-Cellular Biochemistry, 1993, 21, 143-168.                                                                             | 1.0 | 36        |
| 21 | The Decrease of Mineralcorticoid Receptor Drives Angiogenic Pathways in Colorectal Cancer. PLoS<br>ONE, 2013, 8, e59410.                                                              | 1.1 | 30        |
| 22 | Genomic organization and transcriptional analysis of the human genes coding for caveolin-1 and caveolin-2. Gene, 2000, 243, 75-83.                                                    | 1.0 | 29        |
| 23 | Different molecular behavior of CD40 mutants causing hyper-IgM syndrome. Blood, 2010, 116, 5867-5874.                                                                                 | 0.6 | 29        |
| 24 | Aberrant disulphide bonding contributes to the ER retention of alpha1-antitrypsin deficiency variants.<br>Human Molecular Genetics, 2016, 25, 642-650.                                | 1.4 | 28        |
| 25 | Molecular characterization of the new defective P <sub>brescia</sub> alpha1-antitrypsin allele. Human<br>Mutation, 2009, 30, E771-E781.                                               | 1.1 | 27        |
| 26 | Human Caveolin-1 and Caveolin-2 Are Closely Linked Genes Colocalized with WI-5336 in a Region of 7q31<br>Frequently Deleted in Tumors. Genomics, 1999, 56, 355-356.                   | 1.3 | 26        |
| 27 | Heteropolymerization of α-1-antitrypsin mutants in cell models mimicking heterozygosity. Human<br>Molecular Genetics, 2018, 27, 1785-1793.                                            | 1.4 | 24        |
| 28 | The pathological Trento variant of alphaâ€lâ€antitrypsin (E75V) shows nonclassical behaviour during polymerization. FEBS Journal, 2017, 284, 2110-2126.                               | 2.2 | 23        |
| 29 | Intermittent C1-Inhibitor Deficiency Associated with Recessive Inheritance: Functional and Structural<br>Insight. Scientific Reports, 2018, 8, 977.                                   | 1.6 | 22        |
| 30 | Neuroserpin: structure, function, physiology and pathology. Cellular and Molecular Life Sciences, 2021, 78, 6409-6430.                                                                | 2.4 | 16        |
| 31 | Intrahepatic heteropolymerization of M and Z alpha-1-antitrypsin. JCI Insight, 2020, 5, .                                                                                             | 2.3 | 16        |
| 32 | Phenotypic behavior of C2C12 myoblasts upon expression of the dystrophyâ€related caveolinâ€3 P104L and<br>TFT mutants. FEBS Letters, 2007, 581, 5099-5104.                            | 1.3 | 13        |
| 33 | Characterisation of a type II functionally-deficient variant of alpha-1-antitrypsin discovered in the general population. PLoS ONE, 2019, 14, e0206955.                               | 1.1 | 13        |
| 34 | Cellular Models for the Serpinopathies. Methods in Molecular Biology, 2018, 1826, 109-121.                                                                                            | 0.4 | 9         |
| 35 | The molecular species responsible for α 1 â€antitrypsin deficiency are suppressed by a small molecule<br>chaperone. FEBS Journal, 2021, 288, 2222-2237.                               | 2.2 | 8         |
| 36 | The Importance of N186 in the Alpha-1-Antitrypsin Shutter Region Is Revealed by the Novel Bologna<br>Deficiency Variant. International Journal of Molecular Sciences, 2021, 22, 5668. | 1.8 | 5         |

| #  | Article                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------|-----|-----------|
| 37 | ALPHA1-ANTITRYPSIN DEFICIENCY: A 25-YEAR EXPERIENCE. Chest, 2020, 157, A177. | 0.4 | Ο         |