
Kevin Hammond

List of Publications by Year
in descending order

Source: https://exaly.com/author-pdf/4467153/publications.pdf

Version: 2024-02-01

65

papers

1,386

citations

13

h-index

687363

33

g-index

395702

71

all docs

71

docs citations

71

times ranked

445

citing authors

Kevin Hammond

2

Article IF Citations

1 Report on the programming language Haskell. ACM SIGPLAN Notices, 1992, 27, 1-164. 0.2 539

2 Type classes in Haskell. ACM Transactions on Programming Languages and Systems, 1996, 18, 109-138. 2.1 142

3 Static determination of quantitative resource usage for higher-order programs. , 2010, , . 74

4 Benchmarking implementations of functional languages with â€˜Pseudoknotâ€™, a float-intensive
benchmark. Journal of Functional Programming, 1996, 6, 621-655. 0.8 51

5 Inferring Cost Equations for Recursive, Polymorphic and Higher-Order Functional Programs. Lecture
Notes in Computer Science, 2004, , 86-101. 1.3 50

6 Hume: A Domain-Specific Language for Real-Time Embedded Systems. Lecture Notes in Computer Science,
2003, , 37-56. 1.3 38

7 â€œCarbon Creditsâ€• for Resource-Bounded Computations Using Amortised Analysis. Lecture Notes in
Computer Science, 2009, , 354-369. 1.3 37

8 Engineering parallel symbolic programs in GPH. Concurrency and Computation: Practice and
Experience, 1999, 11, 701-752. 0.5 27

9 AUTOMATIC SKELETONS IN TEMPLATE HASKELL. Parallel Processing Letters, 2003, 13, 413-424. 0.6 24

10 A verified staged interpreter is a verified compiler. , 2006, , . 24

11 Automatic amortised analysis of dynamic memory allocation for lazy functional programs. , 2012, , . 24

12 The ParaPhrase Project: Parallel Patterns for Adaptive Heterogeneous Multicore Systems. Lecture
Notes in Computer Science, 2013, , 218-236. 1.3 24

13 Cost-Directed Refactoring for Parallel Erlang Programs. International Journal of Parallel
Programming, 2014, 42, 564-582. 1.5 23

14 Scrapping your inefficient engine. , 2010, , . 18

15 Discovering parallel pattern candidates in Erlang. , 2014, , . 15

16 Type-Based Cost Analysis for Lazy Functional Languages. Journal of Automated Reasoning, 2017, 59,
87-120. 1.4 14

17 A Dependently Typed Framework for Static Analysis of Program Execution Costs. Lecture Notes in
Computer Science, 2006, , 74-90. 1.3 13

18 Static determination of quantitative resource usage for higher-order programs. ACM SIGPLAN
Notices, 2010, 45, 223-236. 0.2 13

3

Kevin Hammond

Article IF Citations

19 Type classes in Haskell. Lecture Notes in Computer Science, 1994, , 241-256. 1.3 13

20 ParaForming: Forming Parallel Haskell Programs Using Novel Refactoring Techniques. Lecture Notes
in Computer Science, 2012, , 82-97. 1.3 13

21 Type-Based Allocation Analysis for Co-recursion in Lazy Functional Languages. Lecture Notes in
Computer Science, 2015, , 787-811. 1.3 12

22 Granularity-Aware Work-Stealing for Computationally-Uniform Grids. , 2010, , . 11

23 Domain Specific Languages (DSLs) for Network Protocols (Position Paper). , 2009, , . 10

24 Agricultural Reform: More Efficient Farming Using Advanced Parallel Refactoring Tools. , 2014, , . 10

25 SymGrid-Par: Designing a Framework for Executing Computational Algebra Systems on Computational
Grids. Lecture Notes in Computer Science, 2007, , 617-624. 1.3 10

26 A language-independent parallel refactoring framework. , 2012, , . 9

27 Why Parallel Functional Programming Matters: Panel Statement. Lecture Notes in Computer Science,
2011, , 201-205. 1.3 9

28 Resource-Safe Systems Programming with Embedded Domain Specific Languages. Lecture Notes in
Computer Science, 2012, , 242-257. 1.3 9

29 Paraphrasing: Generating Parallel Programs Using Refactoring. Lecture Notes in Computer Science,
2013, , 237-256. 1.3 9

30 HaskSkel: Algorithmic Skeletons in Haskell. Lecture Notes in Computer Science, 2000, , 181-198. 1.3 8

31 Towards formally verifiable resource bounds for real-time embedded systems. ACM SIGBED Review,
2006, 3, 27-36. 1.8 8

32 Correct-by-Construction Concurrency: Using Dependent Types to Verify Implementations of Effectful
Resource Usage Protocols. Fundamenta Informaticae, 2010, 102, 145-176. 0.4 8

33 Finding parallel functional pearls: Automatic parallel recursion scheme detection in Haskell
functions via anti-unification. Future Generation Computer Systems, 2018, 79, 669-686. 7.5 7

34 Generic Access to Web and Grid-based Symbolic Computing Services: the SymGrid-Services Framework.
, 2007, , . 6

35 Scrapping your inefficient engine. ACM SIGPLAN Notices, 2010, 45, 297-308. 0.2 6

36 Automatic amortised analysis of dynamic memory allocation for lazy functional programs. ACM
SIGPLAN Notices, 2012, 47, 165-176. 0.2 6

4

Kevin Hammond

Article IF Citations

37 Automatically deriving cost models for structured parallel processes using hylomorphisms. Future
Generation Computer Systems, 2018, 79, 653-668. 7.5 6

38 Improving Granularity in Parallel Functional Programs: A Graphical Winnowing System for Haskell.
Workshops in Computing, 1995, , 111-126. 0.4 6

39 The Missing Link! A New Skeleton for Evolutionary Multi-agent Systems in Erlang. International
Journal of Parallel Programming, 2018, 46, 4-22. 1.5 5

40 Towards resource-certified software. , 2007, , . 4

41 Low-pain, high-gain multicore programming in Haskell. , 2008, , . 4

42 Making a packet: Cost-effective communication for a parallel graph reducer. Lecture Notes in
Computer Science, 1997, , 184-199. 1.3 4

43 SymGrid: A Framework for Symbolic Computations on the Grid. , 2007, , . 3

44 Mapping parallel programs to heterogeneous CPU/GPU architectures using a Monte Carlo Tree Search.
, 2013, , . 3

45 HPCâ€•GAP: engineering a 21stâ€•century highâ€•performance computer algebra system. Concurrency
Computation Practice and Experience, 2016, 28, 3606-3636. 2.2 3

46 Towards semi-automatic data-type translation for parallelism in Erlang. , 2016, , . 3

47 Extending the â€œOpen-Closed Principleâ€• to Automated Algorithm Configuration. Evolutionary
Computation, 2019, 27, 173-193. 3.0 3

48 Farms, pipes, streams and reforestation: reasoning about structured parallel processes using types
and hylomorphisms. ACM SIGPLAN Notices, 2016, 51, 4-17. 0.2 3

49 Mind Your Outcomes: The Î”QSD Paradigm for Quality-Centric Systems Development and Its Application
to a Blockchain Case Study. Computers, 2022, 11, 45. 3.3 3

50 Using application information to drive adaptive grid middleware scheduling decisions. , 2008, , . 2

51 Comparing and Optimising Parallel Haskell Implementations for Multicore Machines. , 2009, , . 2

52 PAEAN: Portable and scalable runtime support for parallel Haskell dialects. Journal of Functional
Programming, 2016, 26, . 0.8 2

53 How to be a Successful Thief. Lecture Notes in Computer Science, 2013, , 114-125. 1.3 2

54 Improving Your CASH Flow: The Computer Algebra SHell. Lecture Notes in Computer Science, 2011, ,
169-184. 1.3 1

5

Kevin Hammond

Article IF Citations

55 Naira: A parallel 2Haskell compiler. Lecture Notes in Computer Science, 1998, , 214-230. 1.3 1

56 The Peter Landin prize. Higher-Order and Symbolic Computation, 2009, 22, 305-312. 0.3 0

57 GUEST EDITORS NOTE: HIGH-LEVEL PROGRAMMING FOR HETEROGENEOUS AND HIERARCHICAL PARALLEL
SYSTEMS. Parallel Processing Letters, 2012, 22, 1202002. 0.6 0

58 Kindergarten cop: dynamic nursery resizing for GHC. , 2016, , . 0

59 In search of a map: using program slicing to discover potential parallelism in recursive functions. ,
2017, , . 0

60 Special issue on Parallel and distributed computing based on the functional programming paradigm.
Concurrency Computation Practice and Experience, 2018, 30, e4842. 2.2 0

61 Learning-Based Dynamic Pinning of Parallelized Applications in Many-Core Systems. , 2019, , . 0

62 Refactoring for introducing and tuning parallelism for heterogeneous multicore machines in Erlang.
Concurrency Computation Practice and Experience, 2021, 33, e5420. 2.2 0

63 Repeating History: Execution Replay for Parallel Haskell Programs. Lecture Notes in Computer Science,
2013, , 231-246. 1.3 0

64 Timing Properties and Correctness for Structured Parallel Programs on x86-64 Multicores. Lecture
Notes in Computer Science, 2016, , 101-125. 1.3 0

65 Flexible Formality Practical Experience with Agile Formal Methods. Lecture Notes in Computer
Science, 2020, , 94-120. 1.3 0

