
Claudia Calcagno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4466855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Artificial intelligence–enabled rapid diagnosis of patients with COVID-19. Nature Medicine, 2020, 26, 1224-1228.	30.7	757
2	Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet, The, 2017, 389, 834-845.	13.7	442
3	Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Science Advances, 2015, 1, .	10.3	173
4	Hyaluronan Nanoparticles Selectively Target Plaque-Associated Macrophages and Improve Plaque Stability in Atherosclerosis. ACS Nano, 2017, 11, 5785-5799.	14.6	137
5	Detection of Neovessels in Atherosclerotic Plaques of Rabbits Using Dynamic Contrast Enhanced MRI and 18F-FDG PET. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1311-1317.	2.4	127
6	Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1039-1046.	3.3	127
7	Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease. Nature Communications, 2017, 8, 14064.	12.8	118
8	Trained Immunity-Promoting Nanobiologic Therapy Suppresses Tumor Growth and Potentiates Checkpoint Inhibition. Cell, 2020, 183, 786-801.e19.	28.9	101
9	Immune cell screening of a nanoparticle library improves atherosclerosis therapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6731-E6740.	7.1	95
10	Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nature Biomedical Engineering, 2018, 2, 279-292.	22.5	94
11	InÂVivo PET Imaging of HDL in MultipleÂAtherosclerosisÂModels. JACC: Cardiovascular Imaging, 2016, 9, 950-961.	5.3	78
12	Imaging Macrophage and Hematopoietic Progenitor Proliferation in Atherosclerosis. Circulation Research, 2015, 117, 835-845.	4.5	72
13	Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging, 2019, 12, 2015-2026.	5.3	66
14	The complementary roles of dynamic contrast-enhanced MRI and 18F-fluorodeoxyglucose PET/CT for imaging of carotid atherosclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 2013, 40, 1884-1893.	6.4	57
15	Imaging-assisted nanoimmunotherapy for atherosclerosis in multiple species. Science Translational Medicine, 2019, 11, .	12.4	51
16	Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis. Angiogenesis, 2010, 13, 87-99.	7.2	47
17	Monocyte and Macrophage Dynamics in the Cardiovascular System. Journal of the American College of Cardiology, 2018, 72, 2198-2212.	2.8	47
18	Alternatively Spliced Tissue Factor Promotes Plaque Angiogenesis Through the Activation of Hypoxia-Inducible Factor-1α and Vascular Endothelial Growth Factor Signaling. Circulation, 2014, 130, 1274-1286.	1.6	44

CLAUDIA CALCAGNO

#	Article	IF	CITATIONS
19	Probing myeloid cell dynamics in ischaemic heart disease by nanotracer hot-spot imaging. Nature Nanotechnology, 2020, 15, 398-405.	31.5	42
20	PET/MR Imaging of Malondialdehyde-Acetaldehyde Epitopes With a HumanÂAntibody Detects ClinicallyÂRelevant Atherothrombosis. Journal of the American College of Cardiology, 2018, 71, 321-335.	2.8	39
21	Pharmaceutical development and preclinical evaluation of a GMP-grade anti-inflammatory nanotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1133-1140.	3.3	37
22	Vessel wall characterization using quantitative MRI: what's in a number?. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2018, 31, 201-222.	2.0	35
23	Emerging Magnetic Resonance Imaging Techniques for Atherosclerosis Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 841-849.	2.4	32
24	Imaging Cardiovascular and Lung Macrophages With the Positron Emission Tomography Sensor ⁶⁴ Cu-Macrin in Mice, Rabbits, and Pigs. Circulation: Cardiovascular Imaging, 2020, 13, e010586.	2.6	32
25	Reproducibility of black blood dynamic contrastâ€enhanced magnetic resonance imaging in aortic plaques of atherosclerotic rabbits. Journal of Magnetic Resonance Imaging, 2010, 32, 191-198.	3.4	31
26	Three-dimensional dynamic contrast-enhanced MRI for the accurate, extensive quantification of microvascular permeability in atherosclerotic plaques. NMR in Biomedicine, 2015, 28, 1304-1314.	2.8	30
27	Combined PET/DCE-MRI in a RabbitÂModelÂof Atherosclerosis. JACC: Cardiovascular Imaging, 2018, 11, 291-301.	5.3	25
28	An iterative sparse deconvolution method for simultaneous multicolor ¹⁹ Fâ€MRI of multiple contrast agents. Magnetic Resonance in Medicine, 2020, 83, 228-239.	3.0	23
29	Gadolinium-Based Contrast Agents for Vessel Wall Magnetic Resonance Imaging (MRI) of Atherosclerosis. Current Cardiovascular Imaging Reports, 2013, 6, 11-24.	0.6	22
30	Multimodal Positron Emission Tomography Imaging to Quantify Uptake of ⁸⁹ Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall. Bioconjugate Chemistry, 2020, 31, 360-368.	3.6	22
31	Hybrid FDG-PET/MR or FDG-PET/CT to Detect Disease Activity in Patients With Persisting Arrhythmias After Myocarditis. JACC: Cardiovascular Imaging, 2021, 14, 288-292.	5.3	22
32	A modular approach toward producing nanotherapeutics targeting the innate immune system. Science Advances, 2021, 7, .	10.3	20
33	Advances in Therapies and Imaging for Systemic Vasculitis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1520-1541.	2.4	19
34	SHILO, a novel dual imaging approach for simultaneous HI-/LOw temporal (Low-/Hi-spatial) resolution imaging for vascular dynamic contrast enhanced cardiovascular magnetic resonance: numerical simulations and feasibility in the carotid arteries. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 42.	3.3	18
35	Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging. Journal of Nuclear Cardiology, 2020, 27, 1126-1141.	2.1	17
36	Factors Associated With Longitudinal Psychological and Physiological Stress in Health Care Workers During the COVID-19 Pandemic: Observational Study Using Apple Watch Data. Journal of Medical Internet Research, 2021, 23, e31295.	4.3	15

CLAUDIA CALCAGNO

#	Article	IF	CITATIONS
37	DCE-MRI of the Liver: Reconstruction of the Arterial Input Function Using a Low Dose Pre-Bolus Contrast Injection. PLoS ONE, 2014, 9, e115667.	2.5	14
38	Systematically evaluating DOTATATE and FDG as PET immuno-imaging tracers of cardiovascular inflammation. Scientific Reports, 2022, 12, 6185.	3.3	14
39	Imaging-guided nanomedicine development. Current Opinion in Chemical Biology, 2021, 63, 78-85.	6.1	13
40	Simultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction. International Journal of Cardiovascular Imaging, 2016, 32, 61-71.	1.5	12
41	Systems Biology and Noninvasive Imaging of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, e1-8.	2.4	12
42	Hybrid PET/MR Kernelised Expectation Maximisation Reconstruction for Improved Image-Derived Estimation of the Input Function from the Aorta of Rabbits. Contrast Media and Molecular Imaging, 2019, 2019, 1-12.	0.8	11
43	Intraplaque and Cellular Distribution of Dextran-Coated Iron Oxide Fluorescently Labeled Nanoparticles. Circulation: Cardiovascular Imaging, 2017, 10, .	2.6	6
44	Plaque microvascularization and permeability: Key players in atherogenesis and plaque rupture. Atherosclerosis, 2017, 263, 320-321.	0.8	6
45	Multimodal imaging of bacterial-host interface in mice and piglets with <i>Staphylococcus aureus</i> endocarditis. Science Translational Medicine, 2020, 12, .	12.4	6
46	Whole-Body Atherosclerosis Imaging by Positron Emission Tomography/Magnetic Resonance Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1123-1134.	2.4	5
47	Imaging the Permeable Endothelium. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	4
48	Development and Multiparametric Evaluation of Experimental Atherosclerosis in Rabbits. Methods in Molecular Biology, 2018, 1816, 385-400.	0.9	4
49	An albumin-binding Gd-HPDO3A contrast agent for improved intravascular retention. Inorganic Chemistry Frontiers, 2021, 8, 4014-4025.	6.0	4
50	USPIO-Enhanced CMR of MyocardialÂInflammation. JACC: Cardiovascular Imaging, 2021, 14, 377-378.	5.3	4
51	Ultra-high resolution, 3-dimensional magnetic resonance imaging of the atherosclerotic vessel wall at clinical 7T. PLoS ONE, 2020, 15, e0241779.	2.5	3
52	Feasibility of imaging superficial palmar arch using micro-ultrasound, 7T and 3T magnetic resonance imaging. World Journal of Radiology, 2017, 9, 79.	1.1	3
53	Quantification of Mouse Heart Left Ventricular Function, Myocardial Strain, and Hemodynamic Forces by Cardiovascular Magnetic Resonance Imaging. Journal of Visualized Experiments, 2021, , .	0.3	2
54	Radial k-space acquisition improves robustness of MR-based attenuation maps for MR/PET quantification in an animal imaging study of the abdomen. , 2012, , .		1

#	ARTICLE	IF	CITATIONS
55	PET-driven respiratory phase tracking and self-gating of PET data: clinical demonstration of enhanced lesion detectability in cardiovascular PET/MRI. , 2017, , .		1
56	Clinical imaging of cardiovascular inflammation. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2020, 64, 74-84.	0.7	1
57	Sodium Fluoride PET and AorticÂBioprosthetic Valve Degeneration. Journal of the American College of Cardiology, 2019, 73, 1120-1122.	2.8	0
58	Comparison of Interâ€Observer Bias between Low Resolution and High Resolution Scans using 3T and 7T Scanners. FASEB Journal, 2018, 32, lb533.	0.5	0