Taher Rajaee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4466573/publications.pdf Version: 2024-02-01

Τλήερ Ρλιλές

#	Article	IF	CITATIONS
1	A review of the artificial intelligence methods in groundwater level modeling. Journal of Hydrology, 2019, 572, 336-351.	2.3	247
2	Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Science of the Total Environment, 2009, 407, 4916-4927.	3.9	213
3	Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemometrics and Intelligent Laboratory Systems, 2020, 200, 103978.	1.8	124
4	Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change, 2017, 148, 181-191.	1.6	122
5	River Suspended Sediment Load Prediction: Application of ANN and Wavelet Conjunction Model. Journal of Hydrologic Engineering - ASCE, 2011, 16, 613-627.	0.8	113
6	Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers. Science of the Total Environment, 2011, 409, 2917-2928.	3.9	112
7	Wavelet-linear genetic programming: A new approach for modeling monthly streamflow. Journal of Hydrology, 2017, 549, 461-475.	2.3	84
8	Performance of radial basis and LM-feed forward artificial neural networks for predicting daily watershed runoff. Applied Soft Computing Journal, 2013, 13, 4633-4644.	4.1	76
9	Prioritization of Water Allocation for Adaptation to Climate Change Using Multi-Criteria Decision Making (MCDM). Water Resources Management, 2019, 33, 3401-3416.	1.9	56
10	Hybrid SWMM and particle swarm optimization model for urban runoff water quality control by using green infrastructures (LID-BMPs). Urban Forestry and Urban Greening, 2021, 60, 127032.	2.3	55
11	Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models. Applied Ocean Research, 2015, 53, 208-217.	1.8	44
12	Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model. Environmental Monitoring and Assessment, 2015, 187, 366.	1.3	40
13	Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrological Sciences Journal, 2010, 55, 1175-1189.	1.2	38
14	Multi-criteria decision-making model for wastewater reuse application: a case study from Iran. Desalination and Water Treatment, 2016, 57, 13857-13864.	1.0	37
15	Wavelet and Neuroâ€fuzzy Conjunction Approach for Suspended Sediment Prediction. Clean - Soil, Air, Water, 2010, 38, 275-286.	0.7	32
16	A wavelet–linear genetic programming model for sodium (Na+) concentration forecasting in rivers. Journal of Hydrology, 2016, 537, 398-407.	2.3	29
17	Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	29
18	Assessment of Water Resources Development Projects under Conditions of Climate Change Using Efficiency Indexes (Els). Water Resources Management, 2017, 31, 3723-3744.	1.9	26

Taher Rajaee

#	Article	IF	CITATIONS
19	Improved Water Quality Prediction with Hybrid Wavelet-Genetic Programming Model and Shannon Entropy. Natural Resources Research, 2020, 29, 3819-3840.	2.2	26
20	Prediction of dissolved oxygen in River Calder by noise elimination time series using wavelet transform. Journal of Experimental and Theoretical Artificial Intelligence, 2016, 28, 689-706.	1.8	25
21	Modeling of Dissolved Oxygen Concentration and Its Hysteresis Behavior in Rivers Using Wavelet Transformâ€Based Hybrid Models. Clean - Soil, Air, Water, 2017, 45, .	0.7	24
22	Two decades on the artificial intelligence models advancement for modeling river sediment concentration: State-of-the-art. Journal of Hydrology, 2020, 588, 125011.	2.3	20
23	Selenium transport and transformation modelling in soil columns and ground water contamination prediction. Hydrological Processes, 2008, 22, 2475-2483.	1.1	17
24	Estimating the aeration coefficient and air demand in bottom outlet conduits of dams using GEP and decision tree methods. Flow Measurement and Instrumentation, 2017, 54, 9-19.	1.0	16
25	Utilization of WGEP and WDT Models by Wavelet Denoising to Predict Water Quality Parameters in Rivers. Journal of Hydrologic Engineering - ASCE, 2018, 23, .	0.8	14
26	A multi-objective optimization method based on NSGA-III for water quality sensor placement with the aim of reducing potential contamination of important nodes. Water Science and Technology: Water Supply, 2022, 22, 928-944.	1.0	14
27	A New Approach to Predict Daily pH in Rivers Based on the "à trous―Redundant Wavelet Transform Algorithm. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	10
28	Discrete entropy theory for optimal redesigning of salinity monitoring network in San Francisco bay. Water Science and Technology: Water Supply, 2017, 17, 606-612.	1.0	8
29	Semivariance analysis and transinformation entropy for optimal redesigning of nutrients monitoring network in San Francisco bay. Marine Pollution Bulletin, 2018, 129, 689-694.	2.3	8
30	Applying Climate Adaptation Strategies for Improvement of Management Indexes of a River–Reservoir Irrigation System ^{â€} . Irrigation and Drainage, 2019, 68, 420-432.	0.8	8
31	An investigation of the possible scenarios for the optimal locating of quality sensors in the water distribution networks with uncertain contamination. Journal of Water and Health, 2020, 18, 704-721.	1.1	5
32	Flow forecasting models using hydrologic and hydrometric data. Water Management, 2017, 170, 150-162.	0.4	4
33	Comment on "Performance of ANFIS versus MLP-NN dissolved oxygen prediction models in water quality monitoring A. Najah & A. El-Shafie & O. A. Karim & Amr H. El-Shafie. Environ Sci Pollut Res (2014) 21:1658-1670― Environmental Science and Pollution Research, 2016, 23, 938-940.	2.7	2
34	Using Artificial Intelligent to Model Predict the Biological Resilience With an Emphasis on Population of cyanobacteria in Jajrood River in The Eastern Tehran, Iran. Journal of Environmental Health Science & Engineering, 0, , 1.	1.4	1
35	Comment on "Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations A. Åiljić & D. Antanasijević & A. Perić-Grujić & M. Ristić & V. Pocajt. Environ Sci Pollut Res (2014) 22: 4230-4241― Environmental Science and Pollution Research, 2015, 22, 19313-19314	2.7	0
36	Discussion of "Modeling and Prediction of Hourly Ambient Ozone (O3) and Oxides of Nitrogen (NOx) Concentrations Using Artificial Neural Network and Decision Tree Algorithms for an Urban Intersection in India―by Chandrra Sekar, C. S. P. Ojha, B. R. Gurjar, and Manish Kumar Goyal. Journal of Hazardous, Toxic, and Radioactive Waste, 2016, 20, 07016001.	1.2	0

#	Article	IF	CITATIONS
37	Discussion of "Potential Assessment of Neural Network and Decision Tree Algorithms for Forecasting Ambient PM2.5 and CO Concentrations: Case Study―by Chandrra Sekar, B. R. Gurjar, C. S. P. Ojha, and Manish Kumar Goyal. Journal of Hazardous, Toxic, and Radioactive Waste, 2017, 21, 07017001.	1.2	0