Lingheng Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4466434/publications.pdf

Version: 2024-02-01

42 papers

2,098 citations

236912 25 h-index 42 g-index

42 all docs 42 docs citations

42 times ranked 1477 citing authors

#	Article	IF	CITATIONS
1	Redox-Neutral Couplings between Amides and Alkynes via Cobalt(III)-Catalyzed C–H Activation. Organic Letters, 2016, 18, 588-591.	4.6	145
2	Rhodium(III)-Catalyzed Synthesis of Naphthols via C–H Activation of Sulfoxonium Ylides. Organic Letters, 2017, 19, 4307-4310.	4.6	138
3	Cobalt(III)-Catalyzed Regio- and Stereoselective \hat{l}_{\pm} -Fluoroalkenylation of Arenes with $\langle i \rangle$ gem $\langle i \rangle$ -Difluorostyrenes. Organic Letters, 2016, 18, 6320-6323.	4.6	133
4	Access to Structurally Diverse Quinoline-Fused Heterocycles via Rhodium(III)-Catalyzed C–C/C–N Coupling of Bifunctional Substrates. Organic Letters, 2016, 18, 2812-2815.	4.6	128
5	Cobalt(III)-Catalyzed C–C Coupling of Arenes with 7-Oxabenzonorbornadiene and 2-Vinyloxirane via C–H Activation. Organic Letters, 2016, 18, 3802-3805.	4.6	111
6	Cobalt(III)- and Rhodium(III)-Catalyzed C–H Amidation and Synthesis of 4-Quinolones: C–H Activation Assisted by Weakly Coordinating and Functionalizable Enaminone. Organic Letters, 2017, 19, 1812-1815.	4.6	110
7	Rhodium atalyzed Atroposelective Construction of Indoles via CⰒH Bond Activation. Angewandte Chemie - International Edition, 2021, 60, 8391-8395.	13.8	99
8	Rhodium(III)â€Catalyzed Asymmetric Access to Spirocycles through Câ°'H Activation and Axialâ€toâ€Central Chirality Transfer. Angewandte Chemie - International Edition, 2020, 59, 7188-7192.	13.8	86
9	Rhodium(III)-Catalyzed Mild Alkylation of (Hetero)Arenes with Cyclopropanols via C–H Activation and Ring Opening. Journal of Organic Chemistry, 2016, 81, 4869-4875.	3.2	80
10	Rhodium(<scp>iii</scp>)-catalyzed regio- and stereoselective benzylic α-fluoroalkenylation with gem-difluorostyrenes. Chemical Communications, 2017, 53, 10326-10329.	4.1	75
11	Cobalt(iii)-catalyzed efficient synthesis of indenones through carboannulation of benzoates and alkynes. Organic Chemistry Frontiers, 2016, 3, 813-816.	4.5	69
12	Rhodium(III)-Catalyzed Acylation of C(sp ³)â€"H Bonds with Cyclopropenones. Organic Letters, 2017, 19, 3644-3647.	4.6	61
13	Synthesis of 2â€Substituted Quinolines <i>via</i> Rhodium(III)â€Catalyzed C–H Activation of Imidamides and Coupling with Cyclopropanols. Advanced Synthesis and Catalysis, 2017, 359, 1620-1625.	4.3	59
14	Twofold Câ^'H Activationâ€Based Enantio―and Diastereoselective Câ^'H Arylation Using Diarylacetylenes as Rare Arylating Reagents. Angewandte Chemie - International Edition, 2021, 60, 20424-20429.	13.8	58
15	Mild Acylation of C(sp ³)â€"H and C(sp ²)â€"H Bonds under Redox-Neutral Rh(III) Catalysis. ACS Catalysis, 2016, 6, 7744-7748.	11.2	57
16	Rhodium(III)-Catalyzed Regio- and Stereoselective C–H Allylation of Arenes with Vinyl Benzoxazinanones. Organic Letters, 2016, 18, 4392-4395.	4.6	47
17	Enantioselective and Diastereoselective C–H Alkylation of Benzamides: Synergized Axial and Central Chirality via a Single Stereodetermining Step. ACS Catalysis, 2021, 11, 9151-9158.	11.2	46
18	Access to Substituted Propenoic Acids via Rh(III)-Catalyzed C–H Allylation of (Hetero)Arenes with Methyleneoxetanones. Organic Letters, 2017, 19, 5972-5975.	4.6	43

#	Article	IF	Citations
19	Cobalt(<scp>iii</scp>)-catalyzed C–H amidation of weakly coordinating sulfoxonium ylides and α-benzoylketene dithioacetals. Organic Chemistry Frontiers, 2019, 6, 741-745.	4.5	41
20	Rhodium-Catalyzed Oxidative Synthesis of Quinoline-Fused Sydnones via 2-fold C–H Bond Activation. Journal of Organic Chemistry, 2016, 81, 12038-12045.	3.2	39
21	Rhodiumâ€Catalyzed Amination and Annulation of Arenes with Anthranils: Câ€H Activation Assisted by Weakly Coordinating Amides. Advanced Synthesis and Catalysis, 2017, 359, 4411-4416.	4.3	38
22	Rhodium(<scp>iii</scp>)-catalyzed synthesis of spirocyclic isoindole <i>N</i> -oxides and isobenzofuranones <i>via</i> C–H activation and spiroannulation. Chemical Communications, 2020, 56, 5528-5531.	4.1	34
23	Ruthenium- and Rhodium-Catalyzed Chemodivergent Couplings of Ketene Dithioacetals and α-Diazo Ketones via C–H Activation/Functionalization. Organic Letters, 2018, 20, 4597-4600.	4.6	32
24	Ruthenium(<scp>ii</scp>)-catalyzed α-fluoroalkenylation of arenes <i>via</i> Câ€"H bond activation and Câ€"F bond cleavage. Organic Chemistry Frontiers, 2018, 5, 1978-1982.	4.5	28
25	Rh(III)-catalyzed coupling of nitrones with alkynes for the synthesis of indolines. Chinese Journal of Catalysis, 2015, 36, 925-932.	14.0	27
26	Redox-Neutral Access to Isoquinolinones via Rhodium(III)-Catalyzed Annulations of $\langle i \rangle O \langle i \rangle$ -Pivaloyl Oximes with Ketenes. Organic Letters, 2018, 20, 2698-2701.	4.6	27
27	Rhodium-Catalyzed Atroposelective C–H Arylation of (Hetero)Arenes Using Carbene Precursors as Arylating Reagents. Organic Letters, 2022, 24, 3189-3193.	4.6	25
28	Divergent Coupling of Anilines and Enones by Integration of Câ^'H Activation and Transfer Hydrogenation. Angewandte Chemie - International Edition, 2018, 57, 6681-6685.	13.8	24
29	Access to Quaternary Stereogenic Centers via Rhodium(III)-Catalyzed Annulations between 2-Phenylindoles and Ketenes. Organic Letters, 2018, 20, 1957-1960.	4.6	24
30	Manganese(I)-Catalyzed Synthesis of Fused Eight- and Four-Membered Carbocycles via C–H Activation and Pericyclic Reactions. Organic Letters, 2019, 21, 3402-3406.	4.6	24
31	Rhodium(II)-Catalyzed Regioselective Remote C–H Alkylation of Protic Indoles. ACS Catalysis, 2021, 11, 4929-4935.	11.2	24
32	Rhodiumâ€Catalyzed Atroposelective Construction of Indoles via Câ^'H Bond Activation. Angewandte Chemie, 2021, 133, 8472-8476.	2.0	23
33	Rhodium(III) atalyzed Asymmetric Access to Spirocycles through Câ^'H Activation and Axialâ€ŧo entral Chirality Transfer. Angewandte Chemie, 2020, 132, 7255-7259.	2.0	22
34	Rhodium($\langle scp \rangle iii \langle scp \rangle$)-catalyzed asymmetric [4+1] spiroannulations of $\langle i \rangle O \langle scape i \rangle O \langle scap$	4.1	21
35	Rhodium(<scp>iii</scp>)-catalyzed synthesis of indanones via C–H activation of phenacyl phosphoniums and coupling with olefins. Organic Chemistry Frontiers, 2017, 4, 2114-2118.	4.5	20
36	Cobalt(III)/Rhodium(III) atalyzed Regio―and Stereoselective Allylation of 8â€Methylquinoline via <i>sp</i> ³ Câ^3H Activation. Advanced Synthesis and Catalysis, 2019, 361, 3880-3885.	4.3	19

3

#	Article	IF	CITATION
37	Access to 2-naphthols <i>via ⟨i⟩ Ru(<scp>ii ⟨ scp>⟩)-catalyzed Câ€"H annulation of nitrones with α-diazo sulfonyl ketones. Chemical Communications, 2019, 55, 7339-7342.</scp></i>	4.1	18
38	Rhodium-catalyzed coupling of arenes and fluorinated \hat{l}_{\pm} -diazo diketones: synthesis of chromones. Chemical Communications, 2020, 56, 13169-13172.	4.1	14
39	Ag(I)-Catalyzed Nucleophilic Addition and Friedel–Crafts Alkylation between α-Oxoketene Dithioacetals and Propargyl Carbonates. Organic Letters, 2018, 20, 7775-7778.	4.6	13
40	Twofold Câ^'H Activationâ€Based Enantio―and Diastereoselective Câ^'H Arylation Using Diarylacetylenes as Rare Arylating Reagents. Angewandte Chemie, 2021, 133, 20587-20592.	2.0	11
41	Divergent Coupling of Anilines and Enones by Integration of Câ^'H Activation and Transfer Hydrogenation. Angewandte Chemie, 2018, 130, 6791-6795.	2.0	3
42	Front Cover Picture: Synthesis of 2â€Substituted Quinolines <i>via</i> Rhodium(III)â€Catalyzed C–H Activation of Imidamides and Coupling with Cyclopropanols (Adv. Synth. Catal. 10/2017). Advanced Synthesis and Catalysis, 2017, 359, 1599-1599.	4.3	2