
Vitaly V Akimkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4466137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PROTOPLANETARY DISK STRUCTURE WITH GRAIN EVOLUTION: THE ANDES MODEL. Astrophysical Journal, 2013, 766, 8.	4.5	74
2	Gas Mass Tracers in Protoplanetary Disks: CO is Still the Best. Astrophysical Journal, 2017, 849, 130.	4.5	54
3	Early evolution of viscous and self-gravitating circumstellar disks with a dust component. Astronomy and Astrophysics, 2018, 614, A98.	5.1	54
4	Dust dynamics and evolution in expanding H ii regions. I. Radiative drift of neutral and charged grains. Monthly Notices of the Royal Astronomical Society, 2015, 449, 440-450.	4.4	43
5	Dust dynamics and evolution in H ii regions – II. Effects of dynamical coupling between dust and gas. Monthly Notices of the Royal Astronomical Society, 2017, 469, 630-638.	4.4	38
6	Chemical Signatures of the FU Ori Outbursts. Astrophysical Journal, 2018, 866, 46.	4.5	29
7	Luminosity outburst chemistry in protoplanetary discs: going beyond standard tracers. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1843-1863.	4.4	22
8	Gravitoviscous protoplanetary disks with a dust component. Astronomy and Astrophysics, 2019, 627, A154.	5.1	22
9	IONIZATION AND DUST CHARGING IN PROTOPLANETARY DISKS. Astrophysical Journal, 2016, 833, 92.	4.5	21
10	Gravitoviscous protoplanetary disks with a dust component. Astronomy and Astrophysics, 2020, 637, A5.	5.1	20
11	Stochastic grain heating and mid-infrared emission in protostellar cores. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2430-2441.	4.4	19
12	A possible mechanism for overcoming the electrostatic barrier against dust growth in protoplanetary disks. Astronomy Reports, 2015, 59, 747-761.	0.9	14
13	Revealing dust segregation in protoplanetary discs with the help of multifrequency spectral index maps. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3907-3914.	4.4	13
14	Inhibited Coagulation of Micron-size Dust Due to the Electrostatic Barrier. Astrophysical Journal, 2020, 889, 64.	4.5	13
15	Evolution of dust in protoplanetary disks of eruptive stars. Astronomy and Astrophysics, 2022, 658, A191.	5.1	12
16	Gravitoviscous protoplanetary discs with a dust component – Ⅳ. Disc outer edges, spectral indices, and opacity gaps. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5578-5597.	4.4	10
17	Simulations of Dynamical Gas–Dust Circumstellar Disks: Going Beyond the Epstein Regime. Astronomy Reports, 2020, 64, 107-125.	0.9	9
18	Gravitoviscous Protoplanetary Disks with a Dust Component. V. The Dynamic Model for Freeze-out and Sublimation of Volatiles. Astrophysical Journal, 2021, 910, 153.	4.5	9

VITALY V AKIMKIN

#	Article	IF	CITATIONS
19	Impact of Magnetorotational Instability on Grain Growth in Protoplanetary Disks. II. Increased Grain Collisional Velocities. Astrophysical Journal, 2021, 917, 82.	4.5	9
20	Using HCO ⁺ isotopologues as tracers of gas depletion in protoplanetary disk gaps. Astronomy and Astrophysics, 2020, 644, A4.	5.1	8
21	Structure of CB 26 protoplanetary disk derived from millimeter dust continuum maps. Astronomy Reports, 2012, 56, 915-930.	0.9	7
22	UV-controlled physical and chemical structure of protoplanetary disks. Astrophysics and Space Science, 2011, 335, 33-38.	1.4	6
23	ALMA and VLA Observations of EX Lupi in Its Quiescent State. Astrophysical Journal, 2020, 904, 37.	4.5	4
24	The Young Binary DQ Tau Produces Another X-Ray Flare Near Periastron. Research Notes of the AAS, 2022, 6, 64.	0.7	4
25	Development and application of fast methods for computing momentum transfer between gas and dust in supercomputer simulation of planet formation. Journal of Physics: Conference Series, 2018, 1103, 012008.	0.4	3
26	Retention of Small Charged Dust in Planet Forming Disks. Proceedings of the International Astronomical Union, 2018, 14, 283-284.	0.0	0
27	Chemical modeling of FU Ori protoplanetary disks. Proceedings of the International Astronomical Union, 2018, 14, 367-368.	0.0	0
28	Infrared photometric properties of inner and outer parts of HII regions. Research in Astronomy and Astrophysics, 2019, 19, 148.	1.7	0
29	A numerical approach to model chemistry of complex organic molecules in a protoplanetary disk.	0.6	Ο