Diego Alvarez de la Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4466097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and Regulation of Amiloride-Sensitive Sodium Channels. Annual Review of Physiology, 2000, 62, 573-594.	5.6	306
2	The Serum and Glucocorticoid Kinase sgk Increases the Abundance of Epithelial Sodium Channels in the Plasma Membrane of Xenopus Oocytes. Journal of Biological Chemistry, 1999, 274, 37834-37839.	1.6	245
3	Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2326-2331.	3.3	226
4	Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. Journal of Physiology, 2003, 546, 77-87.	1.3	183
5	Effects of Aldosterone on Biosynthesis, Traffic, and Functional Expression of Epithelial Sodium Channels in A6 Cells. Journal of General Physiology, 2002, 119, 427-442.	0.9	140
6	The Crucial Role of Chromogranins in Storage and Exocytosis Revealed Using Chromaffin Cells from Chromogranin A Null Mouse. Journal of Neuroscience, 2008, 28, 3350-3358.	1.7	120
7	Activation of serum/glucocorticoidâ€ i nduced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy. EMBO Molecular Medicine, 2013, 5, 80-91.	3.3	100
8	Adipocyte Mineralocorticoid Receptor Activation Leads to Metabolic Syndrome and Induction of Prostaglandin D2 Synthase. Hypertension, 2015, 66, 149-157.	1.3	91
9	Role of SGK in hormonal regulation of epithelial sodium channel in A6 cells. American Journal of Physiology - Cell Physiology, 2003, 284, C404-C414.	2.1	81
10	Neutrophil Gelatinase-Associated Lipocalin Is a Novel Mineralocorticoid Target in the Cardiovascular System. Hypertension, 2012, 59, 966-972.	1.3	73
11	Aldosterone-Specific Activation of Cardiomyocyte Mineralocorticoid Receptor In Vivo. Hypertension, 2013, 61, 361-367.	1.3	70
12	The epithelial sodium channel δ-subunit: new notes for an old song. American Journal of Physiology - Renal Physiology, 2012, 303, F328-F338.	1.3	67
13	lon transport in chondrocytes: membrane transporters involved in intracellular ion homeostasis and the regulation of cell volume, free [Ca2+] and pH. Histology and Histopathology, 1998, 13, 893-910.	0.5	63
14	Dopamine transporter glycosylation correlates with the vulnerability of midbrain dopaminergic cells in Parkinson's disease. Neurobiology of Disease, 2009, 36, 494-508.	2.1	57
15	Distribution and regulation of expression of serum―and glucocorticoidâ€induced kinaseâ€1 in the rat kidney. Journal of Physiology, 2003, 551, 455-466.	1.3	49
16	Shear force sensing of epithelial Na ⁺ channel (ENaC) relies on <i>N</i> -glycosylated asparagines in the palm and knuckle domains of αENaC. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 717-726.	3.3	49
17	Cloning and functional expression of a new epithelial sodium channel ? subunit isoform differentially expressed in neurons of the human and monkey telencephalon. Journal of Neurochemistry, 2007, 102, 1304-1315.	2.1	48
18	Sodium transport systems in human chondrocytes. II. Expression of ENaC, Na+/K+/2Cl- cotransporter and Na+/H+ exchangers in healthy and arthritic chondrocytes. Histology and Histopathology, 1999, 14, 1023-31.	0.5	47

#	Article	IF	CITATIONS
19	Expression of ENaC and serum- and glucocorticoid-induced kinase 1 in the rat intestinal epithelium. American Journal of Physiology - Renal Physiology, 2004, 286, G663-G670.	1.6	45
20	Insulin-induced phosphorylation of ENaC correlates with increased sodium channel function in A6 cells. American Journal of Physiology - Cell Physiology, 2005, 288, C141-C147.	2.1	44
21	Mechanisms of Regulation of Epithelial Sodium Channel by SGK1 in A6 Cells. Journal of General Physiology, 2004, 124, 395-407.	0.9	42
22	Multiple Translational Isoforms Give Functional Specificity to Serum- and Glucocorticoid-induced Kinase 1. Molecular Biology of the Cell, 2007, 18, 2072-2080.	0.9	39
23	The neuronal-specific SGK1.1 kinase regulates δ-epithelial Na ⁺ channel independently of PY motifs and couples it to phospholipase C signaling. American Journal of Physiology - Cell Physiology, 2010, 299, C779-C790.	2.1	38
24	SGK1 activates Na+-K+-ATPase in amphibian renal epithelial cells. American Journal of Physiology - Cell Physiology, 2006, 290, C492-C498.	2.1	32
25	The Mineralocorticoid Receptor Is a Constitutive Nuclear Factor in Cardiomyocytes due to Hyperactive Nuclear Localization Signals. Endocrinology, 2010, 151, 3888-3899.	1.4	32
26	The Diuretic Torasemide Does Not Prevent Aldosterone-Mediated Mineralocorticoid Receptor Activation in Cardiomyocytes. PLoS ONE, 2013, 8, e73737.	1.1	32
27	Aldosterone and Vascular Mineralocorticoid Receptors in Murine Endotoxic and Human Septic Shock*. Critical Care Medicine, 2017, 45, e954-e962.	0.4	30
28	SGK1 activation exacerbates diet-induced obesity, metabolic syndrome and hypertension. Journal of Endocrinology, 2020, 244, 149-162.	1.2	29
29	The dopamine transporter is differentially regulated after dopaminergic lesion. Neurobiology of Disease, 2010, 40, 518-530.	2.1	28
30	Structural and molecular determinants of mineralocorticoid receptor signalling. British Journal of Pharmacology, 2022, 179, 3103-3118.	2.7	27
31	ENaC in the Brain - Future Perspectives and Pharmacological Implications. Current Molecular Pharmacology, 2013, 6, 44-49.	0.7	23
32	Histone Deacetylase 6–Controlled Hsp90 Acetylation Significantly Alters Mineralocorticoid Receptor Subcellular Dynamics But Not its Transcriptional Activity. Endocrinology, 2016, 157, 2515-2532.	1.4	22
33	The Neuronal Serum- and Glucocorticoid-Regulated Kinase 1.1 Reduces Neuronal Excitability and Protects against Seizures through Upregulation of the M-Current. Journal of Neuroscience, 2013, 33, 2684-2696.	1.7	21
34	Prevention of Neutrophil Extravasation by α2-Adrenoceptor–Mediated Endothelial Stabilization. Journal of Immunology, 2014, 193, 3023-3035.	0.4	21
35	Differential N termini in epithelial Na ⁺ channel δ-subunit isoforms modulate channel trafficking to the membrane. American Journal of Physiology - Cell Physiology, 2012, 302, C868-C879.	2.1	20
36	Phenotypic Modulation of Cultured Primary Human Aortic Vascular Smooth Muscle Cells by Uremic Serum. Frontiers in Physiology, 2018, 9, 89.	1.3	20

#	Article	IF	CITATIONS
37	Modulating Mineralocorticoid Receptor with Non-steroidal Antagonists. New Opportunities for the Development of Potent and Selective Ligands without Off-Target Side Effects. Journal of Medicinal Chemistry, 2017, 60, 2629-2650.	2.9	19
38	Molecular Components of Nitrate and Nitrite Efflux in Yeast. Eukaryotic Cell, 2014, 13, 267-278.	3.4	18
39	A New Role for the Aldosterone/Mineralocorticoid Receptor Pathway in the Development of Mitral Valve Prolapse. Circulation Research, 2020, 127, e80-e93.	2.0	17
40	Phosphorylation of Mineralocorticoid Receptor Ligand Binding Domain Impairs Receptor Activation and Has a Dominant Negative Effect over Non-phosphorylated Receptors. Journal of Biological Chemistry, 2016, 291, 19068-19078.	1.6	16
41	Structure and expression of the human Na,K-ATPase β2-subunit gene. Gene, 1998, 208, 221-227.	1.0	15
42	Thiol-reactive compounds from garlic inhibit the epithelial sodium channel (ENaC). Bioorganic and Medicinal Chemistry, 2012, 20, 3979-3984.	1.4	15
43	ENaC Modulators and Renal Disease. Current Molecular Pharmacology, 2013, 6, 35-43.	0.7	15
44	Increased SGK1 activity potentiates mineralocorticoid/NaCl-induced kidney injury. American Journal of Physiology - Renal Physiology, 2021, 320, F628-F643.	1.3	15
45	Sodium transport systems in human chondrocytes. I. Morphological and functional expression of the Na+,K(+)-ATPase alpha and beta subunit isoforms in healthy and arthritic chondrocytes. Histology and Histopathology, 1999, 14, 1011-22.	0.5	15
46	11β-HSD2 SUMOylation Modulates Cortisol-Induced Mineralocorticoid Receptor Nuclear Translocation Independently of Effects on Transactivation. Endocrinology, 2017, 158, 4047-4063.	1.4	14
47	Iohexol plasma clearance, a simple and reliable method to measure renal function in conscious mice. Pflugers Archiv European Journal of Physiology, 2016, 468, 1587-1594.	1.3	13
48	Chemical modulation of VLA integrin affinity in human breast cancer cells. Experimental Cell Research, 2007, 313, 1121-1134.	1.2	12
49	Identification of Permissive Insertion Sites for Generating Functional Fluorescent Mineralocorticoid Receptors. Endocrinology, 2012, 153, 3517-3525.	1.4	12
50	Multiple Mineralocorticoid Response Elements Localized in Different Introns Regulate Intermediate Conductance K+ (Kcnn4) Channel Expression in the Rat Distal Colon. PLoS ONE, 2014, 9, e98695.	1.1	12
51	Expression and function of the epithelial sodium channel δ-subunit in human respiratory epithelial cells in vitro. Pflugers Archiv European Journal of Physiology, 2015, 467, 2257-2273.	1.3	12
52	Functional effects of proinflammatory factors present in Sjögren's syndrome salivary microenvironment in an in vitro model of human salivary gland. Scientific Reports, 2017, 7, 11897.	1.6	10
53	Regulation of Aldosterone Signaling by MicroRNAs. Vitamins and Hormones, 2019, 109, 69-103.	0.7	9
54	Heterogeneous nuclear ribonucleoprotein A2/B1 is a tissue-specific aldosterone target gene with prominent induction in the rat distal colon. American Journal of Physiology - Renal Physiology, 2013, 304, G122-G131.	1.6	8

Diego Alvarez de la Rosa

#	Article	IF	CITATIONS
55	SGK1.1 Reduces Kainic Acid-Induced Seizure Severity and Leads to Rapid Termination of Seizures. Cerebral Cortex, 2020, 30, 3184-3197.	1.6	8
56	Sex-Related Signaling of Aldosterone/Mineralocorticoid Receptor Pathway in Calcific Aortic Stenosis. Hypertension, 2022, 79, 1724-1737.	1.3	8
57	Plasma membrane insertion of epithelial sodium channels occurs with dual kinetics. Pflugers Archiv European Journal of Physiology, 2016, 468, 859-870.	1.3	7
58	Chromatin structure analysis of the rat Na, K-ATPase β2 gene 5′-flanking region. International Journal of Biochemistry and Cell Biology, 2002, 34, 632-644.	1.2	4
59	SGK1.1 limits brain damage after status epilepticus through M current-dependent and independent mechanisms. Neurobiology of Disease, 2021, 153, 105317.	2.1	4
60	SGK1.1 isoform is involved in nociceptive modulation, offering a protective effect against noxious cold stimulus in a sexually dimorphic manner. Pharmacology Biochemistry and Behavior, 2022, 212, 173302.	1.3	4
61	Cellular and Developmental Distribution of the Na, K-ATPase ? Subunit Isoforms of Neural Tissues. Annals of the New York Academy of Sciences, 1997, 834, 110-114.	1.8	3
62	Hsp90 acetylation regulates mineralocorticoid receptor subcellular dynamics and aldosteroneâ€induced promoter transactivation (1097.15). FASEB Journal, 2014, 28, 1097.15.	0.2	2
63	Kv1.3 Channel Inhibition Limits Uremia-Induced Calcification in Mouse and Human Vascular Smooth Muscle. Function, 2020, 2, zqaa036.	1.1	2
64	Post-Translational Modification of MR Activity. , 0, , .		1
65	Quantitative Analysis Of DEC/ENaC Subunits Interaction. Biophysical Journal, 2009, 96, 536a.	0.2	Ο
66	Regulation of Delta-Enac Ion Channels by the Neuronal-Specific Sgk1.1 Kinase. Biophysical Journal, 2010, 98, 96a.	0.2	0
67	411 NEUTROPHIL GELATINASE-ASSOCIATED LIPOCALIN IS A NOVEL MINERALOCORTICOID TARGET IN THE CARDIOVASCULAR SYSTEM. Journal of Hypertension, 2012, 30, e121.	0.3	0
68	Regulation of the Kv7.2/3 Channels by the Neuronal Serum-and Gluococorticoids-Regulated Kinase 1.1. Biophysical Journal, 2013, 104, 268a.	0.2	0
69	Advances in the Development of Non-steroidal Mineralocorticoid-receptor Antagonists. , 0, , .		0
70	State-dependent Photocrosslinking at the BK Channel Intersubunit Interface. Biophysical Journal, 2020, 118, 169a.	0.2	0
71	Development and Optimization of Calcium Fluorescent Sensors Based on BK Ion Channels. Biophysical Journal, 2021, 120, 240a.	0.2	0
72	Molecular mechanisms involved in the constitutive nuclear localization of the mineralocorticoid receptor in cardiac myocytes. FASEB Journal, 2010, 24, 1040.11.	0.2	0

#	Article	IF	CITATIONS
73	Differential plasma membrane abundance of epithelial sodium channel δ subunit splice isoforms. FASEB Journal, 2011, 25, 1041.45.	0.2	0
74	Epithelial sodium channel (ENaC) plasma membrane turnover is modified in channels containing δ subunits. FASEB Journal, 2012, 26, 1068.8.	0.2	0
75	Heterogeneous nuclear ribonucleoprotein A2/B1 is a novel aldosterone target gene in the rat distal colon epithelium. FASEB Journal, 2013, 27, 1148.8.	0.2	0
76	Systemic Increase in Serum―and Glucocorticoidâ€Inducible Kinase 1 (SGK1) Activity Potentiates Mineralocorticoid/NaClâ€Induced Renal but not Cardiac Fibrosis. FASEB Journal, 2015, 29, 663.7.	0.2	0
77	Mineralocortidoid Receptor Mediates Uremic Serumâ€Induced Increase in Endothelial Cell Dysfunction. FASEB Journal, 2018, 32, 904.8.	0.2	0
78	SAT-153 Role Of Increased Serum- And Glucocorticoid-inducible Kinase 1 (SGK1) Activity In Gluconeogenesis And Liver Metabolism During Metabolic Syndrome Journal of the Endocrine Society, 2019, 3, .	0.1	0
79	SAT-007 The Long Non-coding RNA Gas5 Selectively Regulates Corticosteroid Receptor Activity. Journal of the Endocrine Society, 2019, 3, .	0.1	0
80	OR12-03 Mineralocorticoid and Glucocorticoid Receptors Adopt Distinct Quaternary Structures and Can Form Heteromultimers That Affect Chromatin-Binding Profiles. Journal of the Endocrine Society, 2020, 4, .	0.1	0
81	Activation of SGK1.1 Upregulates the M-current in the Presence of Epilepsy Mutations. Frontiers in Molecular Neuroscience, 2021, 14, 798261.	1.4	0
82	Ca2+-dependent photocrosslinking in the BK channel intracellular intersubunit interfaces. Biophysical Journal, 2022, 121, 502a.	0.2	0
83	Transcriptional response of aldosterone target genes in the rat and human distal colon during hepatic cirrhosis. FASEB Journal, 2022, 36, .	0.2	0