Dolores Esquivel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4465900/publications.pdf

Version: 2024-02-01

all docs

218677 233421 2,147 66 26 45 citations h-index g-index papers 67 67 67 2932 docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cobaloxime tethered pyridine-functionalized ethylene-bridged periodic mesoporous organosilica as an efficient HER catalyst. Sustainable Energy and Fuels, 2022, 6, 398-407.	4.9	6
2	Surface Diels–Alder adducts on multilayer graphene for the generation of edge-enriched single-atom FeN ₄ sites for ORR and OER electrocatalysis. Sustainable Energy and Fuels, 2022, 6, 1603-1615.	4.9	3
3	Copper-complexed dipyridyl-pyridazine functionalized periodic mesoporous organosilica as a heterogeneous catalyst for styrene epoxidation. Dalton Transactions, 2022, 51, 4884-4897.	3.3	10
4	Hydroxyl-Decorated Diiron Complex as a [FeFe]-Hydrogenase Active Site Model Complex: Light-Driven Photocatalytic Activity and Heterogenization on Ethylene-Bridged Periodic Mesoporous Organosilica. Catalysts, 2022, 12, 254.	3.5	4
5	2-Pyridyl-benzimidazole-Pd(II)/Pd(0) Supported on Magnetic Mesoporous Silica: Aerobic Oxidation of Benzyl Alcohols/Benzaldehydes and Reduction of Nitroarenes. Catalysis Surveys From Asia, 2022, 26, 193-210.	2.6	5
6	Efficient Removal of Nonylphenol Isomers from Water by Use of Organo-Hydrotalcites. International Journal of Environmental Research and Public Health, 2022, 19, 7214.	2.6	0
7	Three-Dimensional Hierarchical Hydrotalcite–Silica Sphere Composites as Catalysts for Baeyer–Villiger Oxidation Reactions Using Hydrogen Peroxide. Catalysts, 2022, 12, 629.	3 . 5	O
8	A new Pd(II)â€supported catalyst on magnetic SBAâ€15 for CC bond formation via the Heck and Hiyama crossâ€coupling reactions. Applied Organometallic Chemistry, 2021, 35, e6078.	3.5	15
9	Analysis of mortars from the castle keep in Priego de Cordoba (Spain). Vibrational Spectroscopy, 2021, 112, 103184.	2.2	2
10	Microstructural analysis of 3D hierarchical composites of hydrotalcite-coated silica microspheres. Microporous and Mesoporous Materials, 2021, 323, 111247.	4.4	5
11	Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coordination Chemistry Reviews, 2021, 448, 214172.	18.8	38
12	2â€Pyridylâ€Benzimidazoleâ€Pd (II) Complex Supported on Magnetic SBAâ€15: An Efficient and Magnetically Retrievable Catalyst for the Heck Reaction. ChemistrySelect, 2021, 6, 13060-13067.	1.5	5
13	Amine-containing (nano-) Periodic Mesoporous Organosilica and its application in catalysis, sorption and luminescence. Microporous and Mesoporous Materials, 2020, 291, 109687.	4.4	39
14	Oleate Epoxidation in a Confined Matrix of Hydrotalcite. ACS Omega, 2020, 5, 619-625.	3.5	1
15	A New Magnetically Retrievable Porous Supported Catalyst for The Suzukiâ€Miyaura Crossâ€Coupling Reaction. ChemistrySelect, 2020, 5, 11690-11697.	1.5	9
16	A multi-analytical study of funerary wall paintings in the Roman necropolis of Camino Viejo de Almodóvar (Córdoba, Spain). European Physical Journal Plus, 2020, 135, 1.	2.6	2
17	Use of Raman spectroscopy to assess nitrate uptake by calcined LDH phases. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125066.	4.7	17
18	MIL-88A Metal-Organic Framework as a Stable Sulfur-Host Cathode for Long-Cycle Li-S Batteries. Nanomaterials, 2020, 10, 424.	4.1	44

#	Article	IF	CITATIONS
19	Preparation of graphene-based nanomaterials by pulsed RF discharges on liquid organic compounds. Journal Physics D: Applied Physics, 2020, 53, 435202.	2.8	3
20	Thiol-Functionalized Ethylene Periodic Mesoporous Organosilica as an Efficient Scavenger for Palladium: Confirming the Homogeneous Character of the Suzuki Reaction. Materials, 2020, 13, 623.	2.9	5
21	A multi-analytical study of a wall painting in the Satyr domus in $C\tilde{A}^3$ rdoba, Spain. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 232, 118148.	3.9	6
22	Tailoring Bifunctional Periodic Mesoporous Organosilicas for Cooperative Catalysis. ACS Applied Nano Materials, 2020, 3, 2373-2382.	5.0	19
23	Characterization of Wallpaintings from the Caliphal Baths of Cordoba (Spain) by X-Ray Diffraction and Raman Microspectroscopy. Analytical Letters, 2019, 52, 411-422.	1.8	3
24	Zirconium coordination polymers based on tartaric and malic acids as catalysts for cyanosilylation reactions. Applied Catalysis A: General, 2019, 585, 117190.	4.3	17
25	A Comparative Study of Particle Size Distribution of Graphene Nanosheets Synthesized by an Ultrasound-Assisted Method. Nanomaterials, 2019, 9, 152.	4.1	89
26	Luminescent Grapheneâ€Based Materials via Europium Complexation on Dipyridylpyridazineâ€Functionalized Graphene Sheets. Chemistry - A European Journal, 2019, 25, 6823-6830.	3.3	14
27	Identification of pigments in the Annunciation sculptural group (Cordoba, Spain) by micro-Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 139-145.	3.9	14
28	Fast ultrasound-assisted synthesis of highly crystalline MIL-88A particles and their application as ethylene adsorbents. Ultrasonics Sonochemistry, 2019, 50, 59-66.	8.2	59
29	Microwave-assisted synthesis of hybrid organo-layered double hydroxides containing cholate and deoxycholate. Materials Chemistry and Physics, 2019, 225, 28-33.	4.0	10
30	Removal of S-metolachlor herbicide from aqueous solutions by meso and microporous organosilica materials. Microporous and Mesoporous Materials, 2019, 278, 35-43.	4.4	12
31	Use of Raman microspectroscopy to characterize wallpaintings in Cerro de las Cabezas and the Roman villa of Priego de Cordoba (Spain). Vibrational Spectroscopy, 2018, 96, 143-149.	2.2	12
32	Luminescent thermometer based on Eu ³⁺ /Tb ³⁺ â€organicâ€functionalized mesoporous silica. Luminescence, 2018, 33, 567-573.	2.9	17
33	The role of water in the reusability of aminated silica catalysts for aldol reactions. Journal of Catalysis, 2018, 361, 51-61.	6.2	39
34	Micro-Raman analysis of mortars and wallpaintings in the Roman villa of Fuente Alamo (Puente Genil,) Tj ETQq0 C	0 rgBT /0 4.1	verlock 10 T 13
35	A Heterogeneous Hydrogenâ€Evolution Catalyst Based on a Mesoporous Organosilica with a Diiron Catalytic Center Modelling [FeFe]â€Hydrogenase. ChemCatChem, 2018, 10, 4894-4899.	3.7	10
36	Spectroscopic analysis of corrosion products in a bronze cauldron from the Late Iberian Iron Age. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 489-496.	3.9	14

#	Article	IF	CITATIONS
37	Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation. Journal of Hazardous Materials, 2017, 339, 368-377.	12.4	33
38	Temperature dependent NIR emitting lanthanide-PMO/silica hybrid materials. Dalton Transactions, 2017, 46, 7878-7887.	3.3	33
39	Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye. Chemosphere, 2017, 180, 239-246.	8.2	116
40	Coumarin Derivatives Solvent-Free Synthesis under Microwave Irradiation over Heterogeneous Solid Catalysts. Molecules, 2017, 22, 2072.	3.8	35
41	Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO ₂ adsorption. Journal of Materials Chemistry A, 2016, 4, 6259-6263.	10.3	176
42	A photoluminescent covalent triazine framework: CO ₂ adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. Journal of Materials Chemistry A, 2016, 4, 13450-13457.	10.3	122
43	Facile Synthesis of Cooperative Acid–Base Catalysts by Clicking Cysteine and Cysteamine on an Ethyleneâ€Bridged Periodic Mesoporous Organosilica. European Journal of Inorganic Chemistry, 2016, 2016, 2144-2151.	2.0	20
44	Effects of amine structure and base strength on acid–base cooperative aldol condensation. Catalysis Today, 2015, 246, 35-45.	4.4	47
45	Eu ³⁺ @PMO: synthesis, characterization and luminescence properties. Journal of Materials Chemistry C, 2015, 3, 2909-2917.	5.5	31
46	Evaluation of different bridged organosilicas as efficient adsorbents for the herbicide S-metolachlor. RSC Advances, 2015, 5, 24158-24166.	3.6	4
47	A "one-step―sulfonic acid PMO as a recyclable acid catalyst. Journal of Catalysis, 2015, 326, 139-148.	6.2	33
48	Silanolâ€Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups. ChemCatChem, 2014, 6, 255-264.	3.7	48
49	Mesoporous phenolic resin and mesoporous carbon for the removal of S-Metolachlor and Bentazon herbicides. Chemical Engineering Journal, 2014, 251, 92-101.	12.7	35
50	Pyrrole PMOs, incorporating new N-heterocyclic compounds on an ethene-PMO through Diels–Alder reactions. Materials Chemistry and Physics, 2014, 148, 403-410.	4.0	10
51	Vulcanized Ethene-PMO: A New Strategy to Create Ultrastable Support Materials and Adsorbents. Journal of Physical Chemistry C, 2014, 118, 17862-17869.	3.1	10
52	Periodic Mesoporous Organosilicas as Catalysts for Organic Reactions. Current Organic Chemistry, 2014, 18, 1280-1295.	1.6	12
53	Designing advanced functional periodic mesoporous organosilicas for biomedical applications Electrodes. AIMS Materials Science, 2014, 1, 70-86.	1.4	19
54	Preparation of Palladium-Supported Periodic Mesoporous Organosilicas and their Use as Catalysts in the Suzuki Cross-Coupling Reaction. Materials, 2013, 6, 1554-1565.	2.9	22

#	Article	IF	CITATION
55	Transition metal exchanged \hat{l}^2 zeolites: Characterization of the metal state and catalytic application in the methanol conversion to hydrocarbons. Microporous and Mesoporous Materials, 2013, 179, 30-39.	4.4	36
56	100% thiol-functionalized ethylene PMOs prepared by "thiol acid–ene―chemistry. Chemical Communications, 2013, 49, 2344.	4.1	46
57	Ti-functionalized NH2-MIL-47: An effective and stable epoxidation catalyst. Catalysis Today, 2013, 208, 97-105.	4.4	31
58	Application of Sulfonic Acid Functionalised Hybrid Silicas Obtained by Oxidative Cleavage of Tetrasulfide Bridges as Catalysts in Esterification Reactions. ChemCatChem, 2013, 5, 1002-1010.	3.7	11
59	Adsorption of the herbicide S-Metolachlor on periodic mesoporous organosilicas. Chemical Engineering Journal, 2013, 228, 205-213.	12.7	29
60	Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chemical Society Reviews, 2013, 42, 3913-3955.	38.1	444
61	Metal-Exchanged \hat{l}^2 Zeolites as Catalysts for the Conversion of Acetone to Hydrocarbons. Materials, 2012, 5, 121-134.	2.9	46
62	Enhanced Concentration of Medium Strength BrÃ \P nsted Acid Sites in Aluminium-Modified Î 2 Zeolite. Catalysis Letters, 2012, 142, 112-117.	2.6	6
63	Formation and functionalization of surface Diels–Alder adducts on ethenylene-bridged periodic mesoporous organosilica. Journal of Materials Chemistry, 2011, 21, 10990.	6.7	37
64	Thermal behaviour, sulfonation and catalytic activity of phenylene-bridged periodic mesoporous organosilicas. Journal of Materials Chemistry, 2011, 21, 724-733.	6.7	36
65	Comparison of the thermal and hydrothermal stabilities of ethylene, ethylidene, phenylene and biphenylene bridged periodic mesoporous organosilicas. Materials Letters, 2011, 65, 1460-1462.	2.6	26
66	Local environment and acidity in alkaline and alkaline-earth exchanged Î ² zeolite: Structural analysis	4.4	32