
## **Dolores Esquivel**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4465900/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications. Chemical Society Reviews, 2013, 42, 3913-3955.                            | 38.1 | 444       |
| 2  | Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO <sub>2</sub> adsorption. Journal of Materials Chemistry A, 2016, 4, 6259-6263.                                                | 10.3 | 176       |
| 3  | A photoluminescent covalent triazine framework: CO <sub>2</sub> adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. Journal of Materials Chemistry A, 2016, 4, 13450-13457.                 | 10.3 | 122       |
| 4  | Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene<br>blue as a model dye. Chemosphere, 2017, 180, 239-246.                                                             | 8.2  | 116       |
| 5  | A Comparative Study of Particle Size Distribution of Graphene Nanosheets Synthesized by an<br>Ultrasound-Assisted Method. Nanomaterials, 2019, 9, 152.                                                             | 4.1  | 89        |
| 6  | Fast ultrasound-assisted synthesis of highly crystalline MIL-88A particles and their application as ethylene adsorbents. Ultrasonics Sonochemistry, 2019, 50, 59-66.                                               | 8.2  | 59        |
| 7  | Silanolâ€Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of<br>Functional Groups. ChemCatChem, 2014, 6, 255-264.                                                                     | 3.7  | 48        |
| 8  | Effects of amine structure and base strength on acid–base cooperative aldol condensation. Catalysis<br>Today, 2015, 246, 35-45.                                                                                    | 4.4  | 47        |
| 9  | Metal-Exchanged $\hat{l}^2$ Zeolites as Catalysts for the Conversion of Acetone to Hydrocarbons. Materials, 2012, 5, 121-134.                                                                                      | 2.9  | 46        |
| 10 | 100% thiol-functionalized ethylene PMOs prepared by "thiol acid–ene―chemistry. Chemical<br>Communications, 2013, 49, 2344.                                                                                         | 4.1  | 46        |
| 11 | MIL-88A Metal-Organic Framework as a Stable Sulfur-Host Cathode for Long-Cycle Li-S Batteries.<br>Nanomaterials, 2020, 10, 424.                                                                                    | 4.1  | 44        |
| 12 | The role of water in the reusability of aminated silica catalysts for aldol reactions. Journal of Catalysis, 2018, 361, 51-61.                                                                                     | 6.2  | 39        |
| 13 | Amine-containing (nano-) Periodic Mesoporous Organosilica and its application in catalysis, sorption and luminescence. Microporous and Mesoporous Materials, 2020, 291, 109687.                                    | 4.4  | 39        |
| 14 | Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coordination Chemistry Reviews, 2021, 448, 214172.                                                    | 18.8 | 38        |
| 15 | Formation and functionalization of surface Diels–Alder adducts on ethenylene-bridged periodic mesoporous organosilica. Journal of Materials Chemistry, 2011, 21, 10990.                                            | 6.7  | 37        |
| 16 | Thermal behaviour, sulfonation and catalytic activity of phenylene-bridged periodic mesoporous organosilicas. Journal of Materials Chemistry, 2011, 21, 724-733.                                                   | 6.7  | 36        |
| 17 | Transition metal exchanged $\hat{l}^2$ zeolites: Characterization of the metal state and catalytic application in the methanol conversion to hydrocarbons. Microporous and Mesoporous Materials, 2013, 179, 30-39. | 4.4  | 36        |
| 18 | Mesoporous phenolic resin and mesoporous carbon for the removal of S-Metolachlor and Bentazon<br>herbicides. Chemical Engineering Journal, 2014, 251, 92-101.                                                      | 12.7 | 35        |

DOLORES ESQUIVEL

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Coumarin Derivatives Solvent-Free Synthesis under Microwave Irradiation over Heterogeneous Solid<br>Catalysts. Molecules, 2017, 22, 2072.                                                                               | 3.8  | 35        |
| 20 | A "one-step―sulfonic acid PMO as a recyclable acid catalyst. Journal of Catalysis, 2015, 326, 139-148.                                                                                                                  | 6.2  | 33        |
| 21 | Thiol-ethylene bridged PMO: A high capacity regenerable mercury adsorbent via intrapore mercury thiolate crystal formation. Journal of Hazardous Materials, 2017, 339, 368-377.                                         | 12.4 | 33        |
| 22 | Temperature dependent NIR emitting lanthanide-PMO/silica hybrid materials. Dalton Transactions, 2017,<br>46, 7878-7887.                                                                                                 | 3.3  | 33        |
| 23 | Local environment and acidity in alkaline and alkaline-earth exchanged β zeolite: Structural analysis<br>and catalytic properties. Microporous and Mesoporous Materials, 2011, 142, 672-679.                            | 4.4  | 32        |
| 24 | Ti-functionalized NH2-MIL-47: An effective and stable epoxidation catalyst. Catalysis Today, 2013, 208, 97-105.                                                                                                         | 4.4  | 31        |
| 25 | Eu <sup>3+</sup> @PMO: synthesis, characterization and luminescence properties. Journal of<br>Materials Chemistry C, 2015, 3, 2909-2917.                                                                                | 5.5  | 31        |
| 26 | Adsorption of the herbicide S-Metolachlor on periodic mesoporous organosilicas. Chemical Engineering Journal, 2013, 228, 205-213.                                                                                       | 12.7 | 29        |
| 27 | Comparison of the thermal and hydrothermal stabilities of ethylene, ethylidene, phenylene and biphenylene bridged periodic mesoporous organosilicas. Materials Letters, 2011, 65, 1460-1462.                            | 2.6  | 26        |
| 28 | Preparation of Palladium-Supported Periodic Mesoporous Organosilicas and their Use as Catalysts in the Suzuki Cross-Coupling Reaction. Materials, 2013, 6, 1554-1565.                                                   | 2.9  | 22        |
| 29 | Facile Synthesis of Cooperative Acid–Base Catalysts by Clicking Cysteine and Cysteamine on an<br>Ethyleneâ€Bridged Periodic Mesoporous Organosilica. European Journal of Inorganic Chemistry, 2016,<br>2016, 2144-2151. | 2.0  | 20        |
| 30 | Tailoring Bifunctional Periodic Mesoporous Organosilicas for Cooperative Catalysis. ACS Applied Nano Materials, 2020, 3, 2373-2382.                                                                                     | 5.0  | 19        |
| 31 | Designing advanced functional periodic mesoporous organosilicas for biomedical applications<br>Electrodes. AIMS Materials Science, 2014, 1, 70-86.                                                                      | 1.4  | 19        |
| 32 | Luminescent thermometer based on Eu <sup>3+</sup> /Tb <sup>3+</sup> â€organicâ€functionalized<br>mesoporous silica. Luminescence, 2018, 33, 567-573.                                                                    | 2.9  | 17        |
| 33 | Zirconium coordination polymers based on tartaric and malic acids as catalysts for cyanosilylation reactions. Applied Catalysis A: General, 2019, 585, 117190.                                                          | 4.3  | 17        |
| 34 | Use of Raman spectroscopy to assess nitrate uptake by calcined LDH phases. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2020, 602, 125066.                                                      | 4.7  | 17        |
| 35 | A new Pd(II)â€supported catalyst on magnetic SBAâ€15 for CC bond formation via the Heck and Hiyama<br>crossâ€coupling reactions. Applied Organometallic Chemistry, 2021, 35, e6078.                                    | 3.5  | 15        |
| 36 | Spectroscopic analysis of corrosion products in a bronze cauldron from the Late Iberian Iron Age.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 205, 489-496.                         | 3.9  | 14        |

| #  | Article                                                                                                                                                                                                        | IF              | CITATIONS        |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| 37 | Luminescent Grapheneâ€Based Materials via Europium Complexation on<br>Dipyridylpyridazineâ€Functionalized Graphene Sheets. Chemistry - A European Journal, 2019, 25, 6823-6830.                                | 3.3             | 14               |
| 38 | Identification of pigments in the Annunciation sculptural group (Cordoba, Spain) by micro-Raman<br>spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214,<br>139-145. | 3.9             | 14               |
| 39 | Micro-Raman analysis of mortars and wallpaintings in the Roman villa of Fuente Alamo (Puente Genil,) Tj ETQq1 1<br>15-23.                                                                                      | 0.784314<br>4.1 | rgBT /Over<br>13 |
| 40 | Use of Raman microspectroscopy to characterize wallpaintings in Cerro de las Cabezas and the Roman<br>villa of Priego de Cordoba (Spain). Vibrational Spectroscopy, 2018, 96, 143-149.                         | 2.2             | 12               |
| 41 | Removal of S-metolachlor herbicide from aqueous solutions by meso and microporous organosilica<br>materials. Microporous and Mesoporous Materials, 2019, 278, 35-43.                                           | 4.4             | 12               |
| 42 | Periodic Mesoporous Organosilicas as Catalysts for Organic Reactions. Current Organic Chemistry, 2014, 18, 1280-1295.                                                                                          | 1.6             | 12               |
| 43 | Application of Sulfonic Acid Functionalised Hybrid Silicas Obtained by Oxidative Cleavage of<br>Tetrasulfide Bridges as Catalysts in Esterification Reactions. ChemCatChem, 2013, 5, 1002-1010.                | 3.7             | 11               |
| 44 | Pyrrole PMOs, incorporating new N-heterocyclic compounds on an ethene-PMO through Diels–Alder reactions. Materials Chemistry and Physics, 2014, 148, 403-410.                                                  | 4.0             | 10               |
| 45 | Vulcanized Ethene-PMO: A New Strategy to Create Ultrastable Support Materials and Adsorbents.<br>Journal of Physical Chemistry C, 2014, 118, 17862-17869.                                                      | 3.1             | 10               |
| 46 | A Heterogeneous Hydrogenâ€Evolution Catalyst Based on a Mesoporous Organosilica with a Diiron<br>Catalytic Center Modelling [FeFe]â€Hydrogenase. ChemCatChem, 2018, 10, 4894-4899.                             | 3.7             | 10               |
| 47 | Microwave-assisted synthesis of hybrid organo-layered double hydroxides containing cholate and deoxycholate. Materials Chemistry and Physics, 2019, 225, 28-33.                                                | 4.0             | 10               |
| 48 | Copper-complexed dipyridyl-pyridazine functionalized periodic mesoporous organosilica as a heterogeneous catalyst for styrene epoxidation. Dalton Transactions, 2022, 51, 4884-4897.                           | 3.3             | 10               |
| 49 | A New Magnetically Retrievable Porous Supported Catalyst for The Suzukiâ€Miyaura Cross oupling<br>Reaction. ChemistrySelect, 2020, 5, 11690-11697.                                                             | 1.5             | 9                |
| 50 | Enhanced Concentration of Medium Strength Brönsted Acid Sites in Aluminium-Modified β Zeolite.<br>Catalysis Letters, 2012, 142, 112-117.                                                                       | 2.6             | 6                |
| 51 | A multi-analytical study of a wall painting in the Satyr domus in Córdoba, Spain. Spectrochimica Acta -<br>Part A: Molecular and Biomolecular Spectroscopy, 2020, 232, 118148.                                 | 3.9             | 6                |
| 52 | Cobaloxime tethered pyridine-functionalized ethylene-bridged periodic mesoporous organosilica as an<br>efficient HER catalyst. Sustainable Energy and Fuels, 2022, 6, 398-407.                                 | 4.9             | 6                |
| 53 | Thiol-Functionalized Ethylene Periodic Mesoporous Organosilica as an Efficient Scavenger for<br>Palladium: Confirming the Homogeneous Character of the Suzuki Reaction. Materials, 2020, 13, 623.              | 2.9             | 5                |
| 54 | Microstructural analysis of 3D hierarchical composites of hydrotalcite-coated silica microspheres.<br>Microporous and Mesoporous Materials, 2021, 323, 111247.                                                 | 4.4             | 5                |

DOLORES ESQUIVEL

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | 2â€Pyridylâ€Benzimidazoleâ€Pd (II) Complex Supported on Magnetic SBAâ€15: An Efficient and Magnetically<br>Retrievable Catalyst for the Heck Reaction. ChemistrySelect, 2021, 6, 13060-13067.                                        | 1.5 | 5         |
| 56 | 2-Pyridyl-benzimidazole-Pd(II)/Pd(0) Supported on Magnetic Mesoporous Silica: Aerobic Oxidation of<br>Benzyl Alcohols/Benzaldehydes and Reduction of Nitroarenes. Catalysis Surveys From Asia, 2022, 26,<br>193-210.                 | 2.6 | 5         |
| 57 | Evaluation of different bridged organosilicas as efficient adsorbents for the herbicide<br>S-metolachlor. RSC Advances, 2015, 5, 24158-24166.                                                                                        | 3.6 | 4         |
| 58 | Hydroxyl-Decorated Diiron Complex as a [FeFe]-Hydrogenase Active Site Model Complex: Light-Driven<br>Photocatalytic Activity and Heterogenization on Ethylene-Bridged Periodic Mesoporous Organosilica.<br>Catalysts, 2022, 12, 254. | 3.5 | 4         |
| 59 | Characterization of Wallpaintings from the Caliphal Baths of Cordoba (Spain) by X-Ray Diffraction and Raman Microspectroscopy. Analytical Letters, 2019, 52, 411-422.                                                                | 1.8 | 3         |
| 60 | Preparation of graphene-based nanomaterials by pulsed RF discharges on liquid organic compounds.<br>Journal Physics D: Applied Physics, 2020, 53, 435202.                                                                            | 2.8 | 3         |
| 61 | Surface Diels–Alder adducts on multilayer graphene for the generation of edge-enriched single-atom<br>FeN <sub>4</sub> sites for ORR and OER electrocatalysis. Sustainable Energy and Fuels, 2022, 6,<br>1603-1615.                  | 4.9 | 3         |
| 62 | A multi-analytical study of funerary wall paintings in the Roman necropolis of Camino Viejo de<br>Almodóvar (Córdoba, Spain). European Physical Journal Plus, 2020, 135, 1.                                                          | 2.6 | 2         |
| 63 | Analysis of mortars from the castle keep in Priego de Cordoba (Spain). Vibrational Spectroscopy, 2021, 112, 103184.                                                                                                                  | 2.2 | 2         |
| 64 | Oleate Epoxidation in a Confined Matrix of Hydrotalcite. ACS Omega, 2020, 5, 619-625.                                                                                                                                                | 3.5 | 1         |
| 65 | Efficient Removal of Nonylphenol Isomers from Water by Use of Organo-Hydrotalcites. International<br>Journal of Environmental Research and Public Health, 2022, 19, 7214.                                                            | 2.6 | 0         |
| 66 | Three-Dimensional Hierarchical Hydrotalcite–Silica Sphere Composites as Catalysts for<br>Baeyer–Villiger Oxidation Reactions Using Hydrogen Peroxide. Catalysts, 2022, 12, 629.                                                      | 3.5 | 0         |