Yuan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4465690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pore structure of porous Mg-1Mn-xZn alloy fabricated by metal–gas eutectic unidirectional solidification. Journal of Magnesium and Alloys, 2022, 10, 2137-2146.	5.5	6
2	Effect of Cu and Sn additions on the cellular structure of Al–Si–Mg alloys foaming at low temperature (â‰ø00°C). Composites Part B: Engineering, 2022, 234, 109693.	5.9	8
3	Fabrication and compressive behavior of open-cell aluminum foams via infiltration casting using spherical CaCl2 space-holders. China Foundry, 2022, 19, 89-98.	0.5	3
4	Fabrication, properties, and applications of open-cell aluminum foams: A review. Journal of Materials Science and Technology, 2021, 62, 11-24.	5.6	106
5	Tailoring magnetostriction and magnetic domains of <100>-oriented Fe80Ga16Al4 alloy by magnetic field annealing. Rare Metals, 2021, 40, 563-569.	3.6	2
6	Fabrication of high-porosity open-cell aluminum foam via high-temperature deformation of CaCl2 space-holders. Materials Letters, 2021, 284, 129018.	1.3	9
7	Research on the preparation method, microstructure and performance of hard silver plated/Cu-Cr0.6-Zr0.02 alloy contact. Materials Research Express, 2021, 8, 026519.	0.8	2
8	Exploration of a micro multi-electrode technology applied in an air arc heater. Journal Physics D: Applied Physics, 2021, 54, 385205.	1.3	4
9	A novel hot-pressing method to prepare foamable precursor of aluminum foam sandwich (AFS). Materials Letters, 2020, 259, 126895.	1.3	11
10	Cu–Y, Cu–La and Cu–Ba alloys' microstructure and ablation behavior discharging in air and SF6. Vacuum, 2020, 173, 109163.	1.6	11
11	Fabrication of lotus-type porous Mgâ [°] 'Mn alloys by metal/gas eutectic unidirectional solidification. Transactions of Nonferrous Metals Society of China, 2020, 30, 1524-1534.	1.7	6
12	Pore structure analysis of directionally solidified porous copper. China Foundry, 2020, 17, 325-331.	0.5	3
13	Effect of Dy doping on magnetostrictive and mechanical properties of Fe83Ga17 alloy. China Foundry, 2020, 17, 198-205.	0.5	5
14	Compressive and Corrosion Properties of Lotus-Type Porous Mg-Mn Alloys Fabricated by Unidirectional Solidification. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3238-3247.	1.1	11
15	Copper Cathode's Ablated Structure Operated in a 50 Megawatt Arc Heater. Journal of Thermophysics and Heat Transfer, 2019, 33, 1055-1064.	0.9	9
16	Effect of pore structure on heat transfer performance of lotus-type porous copper heat sink. International Journal of Heat and Mass Transfer, 2019, 144, 118641.	2.5	10
17	Optimization of cellular structure of aluminum foams produced by powder metallurgy method. Materials Letters, 2018, 216, 38-41.	1.3	24
18	Effect of Co, Cu, Nb, Ti, V on magnetostriction and mechanical properties of TbDyFe alloys. Intermetallics, 2018, 100, 188-192.	1.8	11

Yuan Liu

#	Article	IF	CITATIONS
19	Influence of withdrawing speed on the porous structures of Gasar ingots fabricated by Bridgman method. Journal of Materials Processing Technology, 2017, 245, 106-114.	3.1	9
20	The cell size reduction of aluminum foam with dynamic gas injection based on the improved foamable melt. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 527, 123-131.	2.3	12
21	Fabrication of Gasar ingots with straight parallel pores by a Bridgman method. Journal of Materials Processing Technology, 2017, 249, 128-134.	3.1	4
22	Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. Journal of Alloys and Compounds, 2017, 694, 869-876.	2.8	142
23	Fabrication, magnetostriction properties and applications of Tb-Dy-Fe alloys: a review. China Foundry, 2016, 13, 75-84.	0.5	32
24	Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Materials Letters, 2016, 174, 82-85.	1.3	79
25	Synthesis of a bimodal porous Cu with nanopores on the inner surface of Gasar pores: Influences of preparation conditions. Applied Surface Science, 2016, 360, 148-156.	3.1	9
26	Depositing and alloying on the inner surface of Gasar Cu pores by plating and annealing treatment. Applied Surface Science, 2015, 342, 69-75.	3.1	2
27	Effect of melt superheat on structural uniformity of lotus-type porous metals prepared by unidirectional solidification. Transactions of Nonferrous Metals Society of China, 2015, 25, 1004-1010.	1.7	8
28	Hydrogen diffusion coefficient in liquid metals evaluated by solid–gas eutectic unidirectional solidification. Transactions of Nonferrous Metals Society of China, 2014, 24, 4030-4037.	1.7	5
29	Pore structure of unidirectional solidified lotus-type porous silicon. Transactions of Nonferrous Metals Society of China, 2014, 24, 3517-3523.	1.7	10
30	Experimental study on heat transfer performance of lotus-type porous copper heat sink. International Journal of Heat and Mass Transfer, 2013, 56, 172-180.	2.5	49
31	Fabrication of Lotus-Type Porous Silicon by Unidirectional Solidification in Pressurized Hydrogen Atmosphere. Materials Science Forum, 2013, 749, 217-222.	0.3	0
32	EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK. Jinshu Xuebao/Acta Metallurgica Sinica, 2012, 48, 329.	0.3	16
33	Influence of solidification mode on pore structure of directionally solidified porous Cu-Mn alloy. Transactions of Nonferrous Metals Society of China, 2011, 21, 88-95.	1.7	23
34	Calculation of hydrogen solubility in molten alloys. Transactions of Nonferrous Metals Society of China, 2011, 21, 1130-1135.	1.7	21
35	Experimental Study on the Pore Structure of Directionally Solidified Porous Cu-Mn Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 3405-3411.	1.1	19
36	Foam stability in gas injection foaming process. Journal of Materials Science, 2010, 45, 6481-6493.	1.7	30

Yuan Liu

#	Article	IF	CITATIONS
37	THEORETICAL ANALYSIS ON EFFECT OF TRANSFERENCE VELOCITY ON STRUCTURE OF POROUS METALS FABRICATED BY CONTINUOUS CASTING GASAR PROCESS. Jinshu Xuebao/Acta Metallurgica Sinica, 2010, 2010, 129-134.	0.3	8
38	Directional solidification of metal-gas eutectic and fabrication of regular porous metals. Frontiers of Mechanical Engineering in China, 2007, 2, 180-183.	0.4	7
39	Metal-gas eutectic growth during unidirectional solidification. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 2871-2878.	1.1	31
40	Effect of Precursor Design on Preparing Open-Cell Aluminum Foam Fabricated by Space-Holder Method. Materials Science Forum, 0, 1035, 169-174.	0.3	0
41	Arc spot formation conditions and influencing factors of a micro multi-electrode technology. Journal Physics D: Applied Physics, 0, , .	1.3	2