Joshua C Doloff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4465640/publications.pdf

Version: 2024-02-01

35 papers 3,902 citations

331538 21 h-index 33 g-index

40 all docs

40 docs citations

40 times ranked

5299 citing authors

#	Article	IF	CITATIONS
1	MAP-ing a way towards tissue repair. Nature Materials, 2021, 20, 452-453.	13.3	O
2	The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nature Biomedical Engineering, 2021, 5, 1115-1130.	11.6	126
3	Liver Disease: Induction, Progression, Immunological Mechanisms, and Therapeutic Interventions. International Journal of Molecular Sciences, 2021, 22, 6777.	1.8	23
4	Drug delivery strategies in maximizing anti-angiogenesis and anti-tumor immunity. Advanced Drug Delivery Reviews, 2021, 179, 113920.	6.6	18
5	Circumventing immune rejection and foreign body response to the rapeutics of type 1 diabetes. , 2021, , 215-250.		1
6	Crystallization of the Multi-Receptor Tyrosine Kinase Inhibitor Sorafenib for Controlled Long-Term Drug Delivery Following a Single Injection. Cellular and Molecular Bioengineering, 2021, 14, 471-486.	1.0	0
7	Less fibrosis around softer silicone implants. Nature Biomedical Engineering, 2021, 5, 1407-1408.	11.6	3
8	Vascularized Muscle Flap to Reduce Wound Breakdown During Flexible Electrode-Mediated Functional Electrical Stimulation After Peripheral Nerve Injury. Frontiers in Neurology, 2020, 11, 644.	1.1	1
9	Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. Nature Materials, 2019, 18, 892-904.	13.3	114
10	Simultaneous spatiotemporal tracking and oxygen sensing of transient implants in vivo using hot-spot MRI and machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4861-4870.	3.3	18
11	Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nature Biotechnology, 2019, 37, 1174-1185.	9.4	398
12	Endothelial siRNA delivery in nonhuman primates using ionizable low–molecular weight polymeric nanoparticles. Science Advances, 2018, 4, eaar8409.	4.7	81
13	Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nature Biomedical Engineering, 2018, 2, 894-906.	11.6	150
14	Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nature Biomedical Engineering, 2018, 2, 810-821.	11.6	242
15	Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-humanÂprimates. Nature Materials, 2017, 16, 671-680.	13.3	214
16	A Facile and Versatile Method to Endow Biomaterial Devices with Zwitterionic Surface Coatings. Advanced Healthcare Materials, 2017, 6, 1601091.	3.9	51
17	Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nature Biotechnology, 2016, 34, 345-352.	9.4	417
18	Long-term glycemic control using polymer-encapsulated human stem cell–derived beta cells in immune-competent mice. Nature Medicine, 2016, 22, 306-311.	15.2	564

#	Article	IF	CITATIONS
19	Neutrophil Responses to Sterile Implant Materials. PLoS ONE, 2015, 10, e0137550.	1.1	92
20	Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature Materials, 2015, 14, 643-651.	13.3	700
21	Transcriptional profiling provides insights into metronomic cyclophosphamide-activated, innate immune-dependent regression of brain tumor xenografts. BMC Cancer, 2015, 15, 375.	1.1	18
22	Adenoviral Vectors for Prodrug Activation-based Gene Therapy for Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 115-126.	0.9	10
23	Anti-tumor innate immunity activated by intermittent metronomic cyclophosphamide treatment of 9L brain tumor xenografts is preserved by anti-angiogenic drugs that spare VEGF receptor 2. Molecular Cancer, 2014, 13, 158.	7.9	24
24	Intermittent Metronomic Drug Schedule Is Essential for Activating Antitumor Innate Immunity and Tumor Xenograft Regression. Neoplasia, 2014, 16, 84-W27.	2.3	65
25	Core–Shell Hydrogel Microcapsules for Improved Islets Encapsulation. Advanced Healthcare Materials, 2013, 2, 667-672.	3.9	141
26	Modular â€~Clickâ€inâ€Emulsion' Boneâ€Targeted Nanogels. Advanced Materials, 2013, 25, 1449-1454.	11.1	73
27	Enhanced function of immuno-isolated islets in diabetes therapy byÂco-encapsulation with an anti-inflammatory drug. Biomaterials, 2013, 34, 5792-5801.	5.7	96
28	Cell Delivery: Core–Shell Hydrogel Microcapsules for Improved Islets Encapsulation (Adv. Healthcare) Tj ETQq0	0 0 ggBT /	Overlock 107
29	VEGF Receptor Inhibitors Block the Ability of Metronomically Dosed Cyclophosphamide to Activate Innate Immunity–Induced Tumor Regression. Cancer Research, 2012, 72, 1103-1115.	0.4	79
30	Dual E1A oncolytic adenovirus: targeting tumor heterogeneity with two independent cancer-specific promoter elements, DF3/MUC1 and hTERT. Cancer Gene Therapy, 2011, 18, 153-166.	2.2	21
31	Adenoviral delivery of pan-caspase inhibitor p35 enhances bystander killing by P450 gene-directed enzyme prodrug therapy using cyclophosphamide+. BMC Cancer, 2010, 10, 487.	1.1	12
32	Increased Tumor Oxygenation and Drug Uptake During Anti-Angiogenic Weekly Low Dose Cyclophosphamide Enhances the Anti-Tumor Effect of Weekly Tirapazamine (Supplementry Material). Current Cancer Drug Targets, 2009, 9, 777-788.	0.8	19
33	Human Telomerase Reverse Transcriptase Promoter-Driven Oncolytic Adenovirus with E1B-19 kDa and E1B-55 kDa Gene Deletions. Human Gene Therapy, 2008, 19, 1383-1399.	1.4	25
34	hTERT-promoter driven oncolytic adenovirus with E1B-19 kDa and E1B-55 kDa gene deletions. Human Gene Therapy, 2008, .	1.4	0
35	Conditionally Replicating Adenoviruses for Cancer Treatment. Current Cancer Drug Targets, 2007, 7, 285-301.	0.8	45