Michael J. Benton

List of Publications by Citations

Source: https://exaly.com/author-pdf/4465567/michael-j-benton-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19,267 116 532 71 h-index g-index citations papers 641 21,814 7.36 7.9 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
532	Paleontological evidence to date the tree of life. <i>Molecular Biology and Evolution</i> , 2007 , 24, 26-53	8.3	674
531	Diversification and extinction in the history of life. <i>Science</i> , 1995 , 268, 52-8	33.3	480
530	The timing and pattern of biotic recovery following the end-Permian mass extinction. <i>Nature Geoscience</i> , 2012 , 5, 375-383	18.3	475
529	Best practices for justifying fossil calibrations. <i>Systematic Biology</i> , 2012 , 61, 346-59	8.4	446
528	How to kill (almost) all life: the end-Permian extinction event. <i>Trends in Ecology and Evolution</i> , 2003 , 18, 358-365	10.9	353
527	The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. <i>Science</i> , 2009 , 323, 728-32	33.3	344
526	Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. <i>Science</i> , 2008 , 321, 1485-8	33.3	304
525	Rocks and clocks: calibrating the Tree of Life using fossils and molecules. <i>Trends in Ecology and Evolution</i> , 2007 , 22, 424-31	10.9	297
524	Classification and phylogeny of the diapsid reptiles. <i>Zoological Journal of the Linnean Society</i> , 1985 , 84, 97-164	2.4	219
523	Dinosaurs and the Cretaceous Terrestrial Revolution. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2008 , 275, 2483-90	4.4	218
522	Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. <i>Nature</i> , 2004 , 432, 97-100	50.4	214
521	Phylogeny of the major tetrapod groups: morphological data and divergence dates. <i>Journal of Molecular Evolution</i> , 1990 , 30, 409-24	3.1	203
520	Recovery from the most profound mass extinction of all time. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2008 , 275, 759-65	4.4	199
519	Early Jurassic mass extinction: A global long-term event. <i>Geology</i> , 1995 , 23, 495	5	198
518	Dating the tree of life. <i>Science</i> , 2003 , 300, 1698-700	33.3	197
517	Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. <i>Nature</i> , 2010 , 463, 1075-8	50.4	188
516	The origin and early radiation of dinosaurs. <i>Earth-Science Reviews</i> , 2010 , 101, 68-100	10.2	188

(2010-2010)

515	The higher-level phylogeny of Archosauria (Tetrapoda: Diapsida). <i>Journal of Systematic Palaeontology</i> , 2010 , 8, 3-47	2.3	173
514	The evolution of large size: how does Cope's Rule work?. <i>Trends in Ecology and Evolution</i> , 2005 , 20, 4-6	10.9	170
513	Early dinosaurs: A phylogenetic study. <i>Journal of Systematic Palaeontology</i> , 2006 , 4, 309-358	2.3	163
512	Impacts of global warming on Permo-Triassic terrestrial ecosystems. <i>Gondwana Research</i> , 2014 , 25, 130	8 <u>5</u> .1 <u>1</u> 337	159
511	A Jurassic ceratosaur from China helps clarify avian digital homologies. <i>Nature</i> , 2009 , 459, 940-4	50.4	158
510	Scleromochlus taylori and the origin of dinosaurs and pterosaurs. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1999 , 354, 1423-1446	5.8	157
509	Uncertain turtle relationships. <i>Nature</i> , 1997 , 387, 466-466	50.4	151
508	Quality of the fossil record through time. <i>Nature</i> , 2000 , 403, 534-7	50.4	151
507	Dinosaur Success in the Triassic: A Noncompetitive Ecological Model. <i>Quarterly Review of Biology</i> , 1983 , 58, 29-55	5.4	150
506	Self-similarity of extinction statistics in the fossil record. <i>Nature</i> , 1997 , 388, 764-767	50.4	140
505	HOW DID LIFE BECOME SO DIVERSE? THE DYNAMICS OF DIVERSIFICATION ACCORDING TO THE FOSSIL RECORD AND MOLECULAR PHYLOGENETICS. <i>Palaeontology</i> , 2007 , 50, 23-40	2.9	139
504	PROGRESS AND COMPETITION IN MACROEVOLUTION. <i>Biological Reviews</i> , 1987 , 62, 305-338	13.5	139
503	Criticality and scaling in evolutionary ecology. <i>Trends in Ecology and Evolution</i> , 1999 , 14, 156-160	10.9	133
502	Complete biotic and sedimentary records of the PermianII riassic transition from Meishan section, South China: Ecologically assessing mass extinction and its aftermath. <i>Earth-Science Reviews</i> , 2015 , 149, 67-107	10.2	115
501	Testing the quality of the fossil record: Paleontological knowledge is improving. <i>Geology</i> , 1994 , 22, 111	5	112
500	The origins of modern biodiversity on land. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2010 , 365, 3667-79	5.8	110
499	Dinosaurs and the island rule: The dwarfed dinosaurs from HaBg Island. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2010 , 293, 438-454	2.9	110
498	Rainforest collapse triggered Carboniferous tetrapod diversification in Euramerica. <i>Geology</i> , 2010 , 38, 1079-1082	5	109

497	Anatomy and systematics of the prosauropod dinosaur Thecodontosaurus antiquus from the upper Triassic of southwest England. <i>Journal of Vertebrate Paleontology</i> , 2000 , 20, 77-108	1.7	109
496	Lazarus taxa and fossil abundance at times of biotic crisis. <i>Journal of the Geological Society</i> , 1999 , 156, 453-456	2.7	108
495	Fossil Reptiles of Great Britain 1995 ,		108
494	Speciation in the fossil record. <i>Trends in Ecology and Evolution</i> , 2001 , 16, 405-411	10.9	106
493	Grit not grass: Concordant patterns of early origin of hypsodonty in Great Plains ungulates and Glires. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2012 , 365-366, 1-10	2.9	101
492	Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. <i>Biology Letters</i> , 2010 , 6, 544-7	3.6	101
491	Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead?. <i>Biological Reviews</i> , 2000 , 75, 633-48	13.5	100
490	The vertebrates of the Jurassic Daohugou Biota of northeastern China. <i>Journal of Vertebrate Paleontology</i> , 2014 , 34, 243-280	1.7	99
489	The Triassic reptile Hyperodapedon from Elgin: functional morphology and relationships. <i>Philosophical Transactions of the Royal Society of London Series B, Biological Sciences</i> , 1983 , 302, 605-718	}	98
488	More than one event in the late Triassic mass extinction. <i>Nature</i> , 1986 , 321, 857-861	50.4	97
487	The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2011 , 278, 2274-82	4.4	96
486	The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. <i>Biology Letters</i> , 2008 , 4, 733-6	3.6	95
485	Interplay of tectonics and climate on a transverse fluvial system, Upper Permian, Southern Uralian Foreland Basin, Russia. <i>Sedimentary Geology</i> , 1999 , 127, 11-29	2.8	94
484	Mass extinction among non-marine tetrapods. <i>Nature</i> , 1985 , 316, 811-814	50.4	93
483	The Agenda Setting Function of the Mass Media At Three Levels of "Information Holding". <i>Communication Research</i> , 1976 , 3, 261-274	3.8	92
482	Early origins of modern birds and mammals: molecules vs. morphology. <i>BioEssays</i> , 1999 , 21, 1043-51	4.1	91
481	Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction. <i>Earth-Science Reviews</i> , 2013 , 125, 199-243	10.2	90
480	Dinosaurs and other fossil vertebrates from fluvial deposits in the Lower Cretaceous of southern Tunisia. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2000 , 157, 227-246	2.9	89

(1997-2009)

479	A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin. <i>Science Bulletin</i> , 2009 , 54, 430-435	10.6	88	
478	Dinosaur evolution. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. <i>Science</i> , 2014 , 345, 451-5	33.3	87	
477	Resetting the evolution of marine reptiles at the Triassic-Jurassic boundary. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 8339-44	11.5	86	
476	A geochemical method to trace the taphonomic history of reworked bones in sedimentary settings. <i>Geology</i> , 1997 , 25, 263	5	86	
475	Characterization of pulmonary function in Duchenne Muscular Dystrophy. <i>Pediatric Pulmonology</i> , 2015 , 50, 487-94	3.5	85	
474	The quality of the fossil record of Mesozoic birds. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2005 , 272, 289-94	4.4	85	
473	Alzheimer-like neurotransmitter deficits in adult Down's syndrome brain tissue. <i>Journal of Neurology, Neurosurgery and Psychiatry</i> , 1987 , 50, 775-8	5.5	83	
472	Models for the rise of the dinosaurs. <i>Current Biology</i> , 2014 , 24, R87-R95	6.3	82	
471	Triassic environments, climates and reptile evolution. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 1982 , 40, 361-379	2.9	81	
470	A new Berriasian species ofGoniopholis (Mesoeucrocodylia, Neosuchia) from England, and a review of the genus. <i>Zoological Journal of the Linnean Society</i> , 2011 , 163, S66-S108	2.4	79	
469	The Pennsylvanian tropical biome reconstructed from the Joggins Formation of Nova Scotia, Canada. <i>Journal of the Geological Society</i> , 2006 , 163, 561-576	2.7	77	
468	Untangling the dinosaur family tree. <i>Nature</i> , 2017 , 551, E1-E3	50.4	76	
467	The radiation of cynodonts and the ground plan of mammalian morphological diversity. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20131865	4.4	76	
466	Catastrophic ocean acidification at the Triassic-Jurassic boundary. <i>Neues Jahrbuch Fur Geologie Und Palaontologie - Abhandlungen</i> , 2008 , 249, 119-127	1.1	76	
465	A Feathered Dinosaur Tail with Primitive Plumage Trapped in Mid-Cretaceous Amber. <i>Current Biology</i> , 2016 , 26, 3352-3360	6.3	76	
464	Macroevolutionary trends in the Dinosauria: Cope's rule. Journal of Evolutionary Biology, 2005, 18, 587-	9 5 .3	75	
463	Biodiversity on land and in the sea. <i>Geological Journal</i> , 2001 , 36, 211-230	1.7	75	
462	Vertebrate Palaeontology 1997 ,		74	

461	The soft tissue of Jeholopterus (Pterosauria, Anurognathidae, Batrachognathinae) and the structure of the pterosaur wing membrane. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2010 , 277, 321-9	4.4	71
460	Disruption of playalacustrine depositional systems at the Permo-Triassic boundary: evidence from Vyazniki and Gorokhovets on the Russian Platform. <i>Journal of the Geological Society</i> , 2010 , 167, 695-716	5 ^{2.7}	70
459	Palaeoecology of the Late Triassic extinction event in the SW UK. <i>Journal of the Geological Society</i> , 2008 , 165, 319-332	2.7	70
458	Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs?. <i>Lethaia</i> , 2012 , 45, 139-156	1.3	67
457	Acute reversible hypoxemia in systemic lupus erythematosus. <i>Annals of Internal Medicine</i> , 1991 , 114, 941-7	8	67
456	A primitive confuciusornithid bird from China and its implications for early avian flight. <i>Science in China Series D: Earth Sciences</i> , 2008 , 51, 625-639		66
455	Ontogeny and the fossil record: what, if anything, is an adult dinosaur?. <i>Biology Letters</i> , 2016 , 12, 20150	948	65
454	Pelagosaurus typus Bronn, 1841 (Mesoeucrocodylia: Thalattosuchia) from the Upper Lias (Toarcian, Lower Jurassic) of Somerset, England. <i>Journal of Vertebrate Paleontology</i> , 2006 , 26, 621-635	1.7	65
453	Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20131071	4.4	64
452	Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. <i>Biological Reviews</i> , 2016 , 91, 106-47	13.5	63
451	Sexual selection in prehistoric animals: detection and implications. <i>Trends in Ecology and Evolution</i> , 2013 , 28, 38-47	10.9	62
450	Feeding behaviour and bone utilization by theropod dinosaurs. <i>Lethaia</i> , 2009 , 43, 232-244	1.3	62
449	Dinosaurs in decline tens of millions of years before their final extinction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5036-40	11.5	62
448	Mummified precocial bird wings in mid-Cretaceous Burmese amber. <i>Nature Communications</i> , 2016 , 7, 12089	17.4	61
447	Dinosaur diversification linked with the Carnian Pluvial Episode. <i>Nature Communications</i> , 2018 , 9, 1499	17.4	60
446	Models for the diversification of life. <i>Trends in Ecology and Evolution</i> , 1997 , 12, 490-5	10.9	60
445	Congruence of morphological and molecular phylogenies. <i>Acta Biotheoretica</i> , 2007 , 55, 269-81	1.1	60
444	A supertree of temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2007 , 274, 3087-95	4.4	60

443	Post-Cambrian closure of the deep-water slope-basin taphonomic window. <i>Geology</i> , 2003 , 31, 769	5	60
442	A genus-level supertree of the Dinosauria. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2002 , 269, 915-21	4.4	59
441	Sea surface temperature contributes to marine crocodylomorph evolution. <i>Nature Communications</i> , 2014 , 5, 4658	17.4	58
440	Assessing the quality of the fossil record: insights from vertebrates. <i>Geological Society Special Publication</i> , 2011 , 358, 63-94	1.7	58
439	Dinosaurs and other fossil vertebrates from the Late Jurassic and Early Cretaceous of the Galve area, NE Spain. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2007 , 249, 180-215	2.9	58
438	Early radiation of the Neoselachian sharks in Western Europe. <i>Geobios</i> , 1999 , 32, 193-204	1.5	55
437	The Triassic reptiles Brachyrhinodon and Polysphenodon and the relationships of the sphenodontids. <i>Zoological Journal of the Linnean Society</i> , 1989 , 96, 413-445	2.4	55
436	The first half of tetrapod evolution, sampling proxies, and fossil record quality. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2013 , 372, 18-41	2.9	54
435	The species of Rhyncosaurus , a rhynchosaur (Reptilia, Diapsida) from the Middle Triassic of England. <i>Philosophical Transactions of the Royal Society of London Series B, Biological Sciences</i> , 1990 , 328, 213-306		53
434	What really happened in the late Triassic?. <i>Historical Biology</i> , 1991 , 5, 263-278	1.1	53
434	What really happened in the late Triassic?. <i>Historical Biology</i> , 1991 , 5, 263-278 Upper Permian vertebrates and their sedimentological context in the South Urals, Russia. <i>Earth-Science Reviews</i> , 2005 , 69, 27-77	1.1	5352
	Upper Permian vertebrates and their sedimentological context in the South Urals, Russia.		
433	Upper Permian vertebrates and their sedimentological context in the South Urals, Russia. Earth-Science Reviews, 2005 , 69, 27-77	10.2	
433	Upper Permian vertebrates and their sedimentological context in the South Urals, Russia. Earth-Science Reviews, 2005, 69, 27-77 Missing data and rhynchosaur phylogeny. Historical Biology, 1995, 10, 137-150 Historical tests of the absolute completeness of the fossil record of tetrapods. Paleobiology, 1990,	10.2	52 52
433 432 431	Upper Permian vertebrates and their sedimentological context in the South Urals, Russia. <i>Earth-Science Reviews</i> , 2005 , 69, 27-77 Missing data and rhynchosaur phylogeny. <i>Historical Biology</i> , 1995 , 10, 137-150 Historical tests of the absolute completeness of the fossil record of tetrapods. <i>Paleobiology</i> , 1990 , 16, 322-335 High rates of evolution preceded the origin of birds. <i>Evolution; International Journal of Organic</i>	10.2	52 52 52
433 432 431 430	Upper Permian vertebrates and their sedimentological context in the South Urals, Russia. <i>Earth-Science Reviews</i> , 2005 , 69, 27-77 Missing data and rhynchosaur phylogeny. <i>Historical Biology</i> , 1995 , 10, 137-150 Historical tests of the absolute completeness of the fossil record of tetrapods. <i>Paleobiology</i> , 1990 , 16, 322-335 High rates of evolution preceded the origin of birds. <i>Evolution; International Journal of Organic Evolution</i> , 2014 , 68, 1497-510	10.2 1.1 2.6 3.8	52 52 52 51
433 432 431 430 429	Upper Permian vertebrates and their sedimentological context in the South Urals, Russia. <i>Earth-Science Reviews</i> , 2005 , 69, 27-77 Missing data and rhynchosaur phylogeny. <i>Historical Biology</i> , 1995 , 10, 137-150 Historical tests of the absolute completeness of the fossil record of tetrapods. <i>Paleobiology</i> , 1990 , 16, 322-335 High rates of evolution preceded the origin of birds. <i>Evolution; International Journal of Organic Evolution</i> , 2014 , 68, 1497-510 Body size evolution in Mesozoic birds. <i>Journal of Evolutionary Biology</i> , 2008 , 21, 618-24 The remarkable fossils from the Early Cretaceous Jehol Biota of China and how they have changed	10.2 1.1 2.6 3.8 2.3	52 52 52 51 51

425	Body size distribution of the dinosaurs. <i>PLoS ONE</i> , 2012 , 7, e51925	3.7	49
424	Palaeobiogeographic relationships of the Hallg biota (Between isolation and innovation. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 2010 , 293, 419-437	2.9	48
423	Macroevolutionary patterns in the evolutionary radiation of archosaurs (Tetrapoda: Diapsida). <i>Earth and Environmental Science Transactions of the Royal Society of Edinburgh</i> , 2010 , 101, 367-382	0.9	47
422	The first definitive carcharodontosaurid (Dinosauria: Theropoda) from Asia and the delayed ascent of tyrannosaurids. <i>Die Naturwissenschaften</i> , 2009 , 96, 1051-8	2	47
421	Palaeontological data and identifying mass extinctions. <i>Trends in Ecology and Evolution</i> , 1994 , 9, 181-5	10.9	46
420	Trace fossils from Lower Palaeozoic ocean-floor sediments of the Southern Uplands of Scotland. <i>Transactions of the Royal Society of Edinburgh: Earth Sciences</i> , 1982 , 73, 67-87		46
419	CALIBRATED DIVERSITY, TREE TOPOLOGY AND THE MOTHER OF MASS EXTINCTIONS: THE LESSON OF TEMNOSPONDYLS. <i>Palaeontology</i> , 2008 , 51, 1261-1288	2.9	45
418	Pedal claw curvature in birds, lizards and mesozoic dinosaurscomplicated categories and compensating for mass-specific and phylogenetic control. <i>PLoS ONE</i> , 2012 , 7, e50555	3.7	45
417	Histology and postural change during the growth of the ceratopsian dinosaur Psittacosaurus lujiatunensis. <i>Nature Communications</i> , 2013 , 4, 2079	17.4	44
416	The Fossil Record of Cretaceous Tetrapods. <i>Palaios</i> , 2000 , 15, 161-165	1.6	44
415	A new, large tyrannosaurine theropod from the Upper Cretaceous of China. <i>Cretaceous Research</i> , 2011 , 32, 495-503	1.8	43
414	Congruence between parsimony and stratigraphy: comparisons of three indices. <i>Paleobiology</i> , 1997 , 23, 20-32	2.6	43
413	Assessing congruence between cladistic and stratigraphic data. Systematic Biology, 1999, 48, 581-96	8.4	43
412	No gap in the Middle Permian record of terrestrial vertebrates. <i>Geology</i> , 2012 , 40, 339-342	5	42
411	Erpetosuchus, a crocodile-like basal archosaur from the Late Triassic of Elgin, Scotland. <i>Zoological Journal of the Linnean Society</i> , 2002 , 136, 25-47	2.4	42
410	Aspects of the thermal ecology of the rusty crayfish Orconectes rusticus (Girard). <i>Oecologia</i> , 1990 , 82, 210-216	2.9	42
409	Ecomorphological diversifications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction. <i>Paleobiology</i> , 2016 , 42, 547-573	2.6	41
408	Mass extinctions among tetrapods and the quality of the fossil record. <i>Philosophical Transactions of the Royal Society of London Series B, Biological Sciences</i> , 1989 , 325, 369-85; discussion 386		41

407	MARINE REPTILES FROM THE UPPER LIAS (LOWER TOARCIAN, LOWER JURASSIC) OF THE YORKSHIRE COAST. <i>Proceedings of the Yorkshire Geological Society</i> , 1984 , 44, 399-429	0.8	41	
406	Hyperthermal-driven mass extinctions: killing models during the Permian-Triassic mass extinction. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2018 , 376,	3	41	
405	Tetrapod postural shift estimated from Permian and Triassic trackways. <i>Palaeontology</i> , 2009 , 52, 1029	-1037	40	
404	Palaeoenvironments of vertebrates on the southern shore of Tethys: The nonmarine Early Cretaceous of Tunisia. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2007 , 243, 118-131	2.9	40	
403	Testing the roles of competition and expansion in tetrapod evolution. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1996 , 263, 641-646	4.4	40	
402	Extinction and dawn of the modern world in the Carnian (Late Triassic). Science Advances, 2020, 6,	14.3	40	
401	Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 9451-6	11.5	40	
400	The Fossil Calibration Database-A New Resource for Divergence Dating. <i>Systematic Biology</i> , 2015 , 64, 853-9	8.4	39	
399	The Extent of the Pterosaur Flight Membrane. Acta Palaeontologica Polonica, 2011, 56, 99-111		39	
398	Evolution of morphological disparity in pterosaurs. <i>Journal of Systematic Palaeontology</i> , 2011 , 9, 337-3	8 53 .3	39	
397	Constraints on the timescale of animal evolutionary history. Palaeontologia Electronica,	1.3	39	
396	Pterosaur integumentary structures with complex feather-like branching. <i>Nature Ecology and Evolution</i> , 2019 , 3, 24-30	12.3	39	
395	A monodactyl nonavian dinosaur and the complex evolution of the alvarezsauroid hand. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 2338-42	11.5	38	
394	A NEW METRIORHYNCHID CROCODILIAN (MESOEUCROCODYLIA: THALATTOSUCHIA) FROM THE KIMMERIDGIAN (UPPER JURASSIC) OF WILTSHIRE, UK. <i>Palaeontology</i> , 2008 , 51, 1307-1333	2.9	38	
393	The basicranium of dicynodonts (Synapsida) and its use in phylogenetic analysis. <i>Palaeontology</i> , 2004 , 47, 619-638	2.9	38	
392	Use of the aquatic oligochaetes Lumbriculus variegatus and Tubifex tubifex for assessing the toxicity of copper and cadmium in a spiked-artificial-sediment toxicity test. <i>Environmental Toxicology</i> , 1999 , 14, 271-278	4.2	38	
391	A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery. <i>Scientific Reports</i> , 2014 , 4, 7142	4.9	37	

389	Biostratigraphic correlation and mass extinction during the Permian-Triassic transition in terrestrial-marine siliciclastic settings of South China. <i>Global and Planetary Change</i> , 2016 , 146, 67-88	4.2	37
388	Exploring macroevolution using modern and fossil data. <i>Proceedings of the Royal Society B:</i> Biological Sciences, 2015 , 282,	4.4	36
387	Magnetostratigraphy of Permian/Triassic boundary sequences in the Cis-Urals, Russia: No evidence for a major temporal hiatus. <i>Earth and Planetary Science Letters</i> , 2009 , 281, 36-47	5.3	36
386	Lower Silurian distal shelf storm-induced turbidites in the Welsh Borders: sediments, tool marks and trace fossils. <i>Journal of the Geological Society</i> , 1981 , 138, 675-694	2.7	36
385	Severe selenium depletion in the Phanerozoic oceans as a factor in three global mass extinction events. <i>Gondwana Research</i> , 2016 , 36, 209-218	5.1	35
384	Early Triassic wrinkle structures on land: stressed environments and oases for life. <i>Scientific Reports</i> , 2015 , 5, 10109	4.9	35
383	How to find a dinosaur, and the role of synonymy in biodiversity studies. <i>Paleobiology</i> , 2008 , 34, 516-533	32.6	35
382	Ecology of earliest reptiles inferred from basal Pennsylvanian trackways. <i>Journal of the Geological Society</i> , 2007 , 164, 1113-1118	2.7	35
381	Lilliput effect in freshwater ostracods during the Permian Triassic extinction. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2015 , 435, 38-52	2.9	34
3 80	The skull and endocranium of a Lower Jurassic ichthyosaur based on digital reconstructions. <i>Palaeontology</i> , 2015 , 58, 723-742	2.9	34
379	Completeness of the fossil record and the validity of sampling proxies at outcrop level. <i>Palaeontology</i> , 2012 , 55, 1155-1175	2.9	34
378	Testing the time axis of phylogenies. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1995 , 349, 5-10	5.8	34
377	Testing the quality of the fossil record by groups and by major habitats. Historical Biology, 1996, 12, 111	-11.567	34
376	Phylogenetically structured variance in felid bite force: the role of phylogeny in the evolution of biting performance. <i>Journal of Evolutionary Biology</i> , 2010 , 23, 463-78	2.3	33
375	Studying function and behavior in the fossil record. <i>PLoS Biology</i> , 2010 , 8, e1000321	9.7	33
374	An evaluation of the phylogenetic relationships of the pterosaurs among archosauromorph reptiles. <i>Journal of Systematic Palaeontology</i> , 2007 , 5, 465-469	2.3	33
373	Testing the marine and continental fossil records. <i>Geology</i> , 1995 , 23, 601	5	33
372	The extent of the preserved feathers on the four-winged dinosaur Microraptor gui under ultraviolet light. <i>PLoS ONE</i> , 2010 , 5, e9223	3.7	33

(2004-2017)

371	A Century of Spinosaurs - A Review and Revision of the Spinosauridae with Comments on Their Ecology. <i>Acta Geologica Sinica</i> , 2017 , 91, 1120-1132	0.7	32	
370	Lystrosaurus georgi, a dicynodont from the Lower Triassic of Russia. <i>Journal of Vertebrate Paleontology</i> , 2005 , 25, 402-413	1.7	32	
369	The fossil record of ichthyosaurs, completeness metrics and sampling biases. <i>Palaeontology</i> , 2015 , 58, 521-536	2.9	31	
368	New Information on Scavenging and Selective Feeding Behaviour of Tyrannosaurids. <i>Acta Palaeontologica Polonica</i> , 2010 , 55, 627-634		31	
367	Congruence between phylogenetic and stratigraphic data on the history of life. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 1997 , 264, 885-890	4.4	31	
366	Richard owen's giant Triassic frogs: archosaurs from the Middle Triassic of England. <i>Journal of Vertebrate Paleontology</i> , 1997 , 17, 74-88	1.7	31	
365	Sphenodontid phylogeny and the problems of multiple trees. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1996 , 351, 1-16	5.8	31	
364	A genetic and morphometric comparison of Helisoma trivolvis and Gambusia holbrooki from clean and contaminated habitats. <i>Ecotoxicology and Environmental Safety</i> , 1994 , 29, 20-37	7	31	
363	A New Basal Actinopterygian Fish from the Anisian (Middle Triassic) of Luoping, Yunnan Province, Southwest China. <i>Acta Palaeontologica Polonica</i> , 2012 , 57, 149-160		30	
362	Occurrence of sauropod dinosaur tracks in the Upper Jurassic of Chile (redescription of Iguanodonichnus frenki). <i>Journal of South American Earth Sciences</i> , 2005 , 20, 253-257	2	30	
361	Selective destruction of leucocytes by freezing as a potential means of modulating tissue immunogenicity: membrane integrity of lymphocytes and macrophages. <i>Cryobiology</i> , 1987 , 24, 91-102	2.7	30	
360	Factors Influencing Instability and Resonances in Geared Systems. <i>Journal of Mechanical Design</i> , 1981 , 103, 372-378		30	
359	On the evolution of extreme structures: static scaling and the function of sexually selected signals. <i>Animal Behaviour</i> , 2018 , 144, 95-108	2.8	30	
358	A basal parvicursorine (Theropoda: Alvarezsauridae) from the Upper Cretaceous of China. <i>Zootaxa</i> , 2010 , 2413, 1	0.5	29	
357	Vertebrate microremains from the Early Cretaceous of southern Tunisia. <i>Geobios</i> , 2010 , 43, 615-628	1.5	29	
356	Cope's Rule in the Pterosauria, and differing perceptions of Cope's Rule at different taxonomic levels. <i>Journal of Evolutionary Biology</i> , 2007 , 20, 1164-70	2.3	29	
355	Simulation of Resonances and Instability Conditions in Pinion-Gear Systems. <i>Journal of Mechanical Design</i> , 1978 , 100, 26-32		29	
354	Origin and Relationships of Dinosauria 2004 , 6-19		29	

353	The Strawberry Bank LagerstEte reveals insights into Early Jurassic life. <i>Journal of the Geological Society</i> , 2015 , 172, 683-692	2.7	28
352	Preservation of exceptional vertebrate assemblages in Middle Permian fluviolacustrine mudstones of Kotel'nich, Russia: stratigraphy, sedimentology, and taphonomy. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2012 , 319-320, 58-83	2.9	28
351	Molecular and morphological phylogenies of mammals: congruence with stratigraphic data. <i>Molecular Phylogenetics and Evolution</i> , 1998 , 9, 398-407	4.1	28
350	THE EFFECTS OF SAMPLING BIAS ON PALAEOZOIC FAUNAS AND IMPLICATIONS FOR MACROEVOLUTIONARY STUDIES. <i>Palaeontology</i> , 2007 , 50, 177-184	2.9	28
349	EVOLUTION OF HINDLIMB POSTURE IN ARCHOSAURS: LIMB STRESSES IN EXTINCT VERTEBRATES. Palaeontology, 2007 , 50, 1519-1529	2.9	28
348	Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil?. <i>Palaeontology</i> , 2017 , 60, 319-328	2.9	27
347	CARBONATE RETICULATED RIDGE STRUCTURES FROM THE LOWER MIDDLE TRIASSIC OF THE LUOPING AREA, YUNNAN, SOUTHWESTERN CHINA: GEOBIOLOGIC FEATURES AND IMPLICATIONS FOR EXCEPTIONAL PRESERVATION OF THE LUOPING BIOTA. <i>Palaios</i> , 2013 , 28, 541-551	1.6	27
346	The asymmetry of the carpal joint and the evolution of wing folding in maniraptoran theropod dinosaurs. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2010 , 277, 2027-33	4.4	27
345	A NEW GENUS OF RHYNCHOSAUR FROM THE MIDDLE TRIASSIC OF SOUTH-WEST ENGLAND. <i>Palaeontology</i> , 2008 , 51, 95-115	2.9	27
344	Fossil quality and naming dinosaurs. <i>Biology Letters</i> , 2008 , 4, 729-32	3.6	27
343	Early Pennsylvanian (Langsettian) fish assemblages from the Joggins Formation, Canada, and their implications for palaeoecology and palaeogeography. <i>Palaeontology</i> , 2015 , 58, 661-690	2.9	26
342	Stratigraphic Indices and Tree Balance. <i>Systematic Biology</i> , 1997 , 46, 563-569	8.4	26
341	Late triassic extinctions and the origin of the dinosaurs. <i>Science</i> , 1993 , 260, 769-70	33.3	26
340	Allozyme Genotype and Differential Resistance to Mercury Pollution in the Caddisfly, Nectopsyche albida. I. Single-Locus Genotypes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1992 , 49, 142-146	2.4	26
339	Variation in life-history characteristics over a clinal gradient in three populations of a communal orb-weaving spider. <i>Oecologia</i> , 1986 , 68, 395-399	2.9	26
338	The Carnian Pluvial Episode and the origin of dinosaurs. <i>Journal of the Geological Society</i> , 2018 , 175, 10	1 9./ 102	625
337	Taxonomic level as a determinant of the shape of the Phanerozoic marine biodiversity curve. <i>American Naturalist</i> , 2003 , 162, 265-76	3.7	25
336	Genetic effects of mercury contamination on aquatic snail populations: Allozyme genotypes and DNA strand breakage. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 584-589	3.8	25

335	Relationship of Allozyme Genotype to Survivorship of Mayflies (Stenonema femoratum) Exposed to Copper. <i>Journal of the North American Benthological Society</i> , 1990 , 9, 271-276		25
334	Archosaur ankles and the relationships of the thecodontian and dinosaurian reptiles. <i>Nature</i> , 1985 , 317, 715-717	50.4	25
333	Functional anatomy and feeding biomechanics of a giant Upper Jurassic pliosaur (Reptilia: Sauropterygia) from Weymouth Bay, Dorset, UK. <i>Journal of Anatomy</i> , 2014 , 225, 209-19	2.9	24
332	Variation in the tail length of non-avian dinosaurs. <i>Journal of Vertebrate Paleontology</i> , 2012 , 32, 1082-10)& <i>9</i>	24
331	Crown clades in vertebrate nomenclature: correcting the definition of Crocodylia. <i>Systematic Biology</i> , 2008 , 57, 173-81	8.4	24
330	Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian Triassic mass extinction. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2017 , 474, 214-23	2 .9	23
329	Biostratigraphy and geometric morphometrics of conchostracans (Crustacea, Branchiopoda) from the Late Triassic fissure deposits of Cromhall Quarry, UK. <i>Palaeontology</i> , 2017 , 60, 349-374	2.9	23
328	Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2018 , 285,	4.4	23
327	Complex rostral neurovascular system in a giant pliosaur. <i>Die Naturwissenschaften</i> , 2014 , 101, 453-6	2	23
326	A new basal hadrosauroid dinosaur (Dinosauria: Ornithopoda) with transitional features from the late cretaceous of Henan Province, China. <i>PLoS ONE</i> , 2014 , 9, e98821	3.7	23
325	Cranial anatomy, taxonomic implications and palaeopathology of an Upper Jurassic Pliosaur (Reptilia: Sauropterygia) from Westbury, Wiltshire, UK. <i>Palaeontology</i> , 2012 , 55, 743-773	2.9	23
324	FISHES AND TETRAPODS IN THE UPPER PENNSYLVANIAN (KASIMOVIAN) COHN COAL MEMBER OF THE MATTOON FORMATION OF ILLINOIS, UNITED STATES: SYSTEMATICS, PALEOECOLOGY, AND PALEOENVIRONMENTS. <i>Palaios</i> , 2011 , 26, 639-657	1.6	23
323	Dinosaurs in the Early and Mid Triassic? The footprint evidence from Britain. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 1996 , 122, 213-225	2.9	23
322	A new Bathonian (Middle Jurassic) microvertebrate site, within the Chipping Norton Limestone Formation at Hornsleasow Quarry, Gloucestershire. <i>Proceedings of the Geologists Association</i> , 1992 , 103, 321-342	1.1	23
321	The posture of floating pterosaurs: Ecological implications for inhabiting marine and freshwater habitats. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 2014 , 394, 89-98	2.9	22
320	Palaeodiversity and formation counts: redundancy or bias?. <i>Palaeontology</i> , 2015 , 58, 1003-1029	2.9	22
319	Dinosaurs and other tetrapods in an Early Cretaceous bauxite-filled fissure, northwestern Romania. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 1997 , 130, 275-292	2.9	22
318	Finding the tree of life: matching phylogenetic trees to the fossil record through the 20th century. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2123-30	4.4	22

317	Discussion on Lazarus taxa and fossil abundance at times of biotic crisis Journal, Vol. 156, 1999, pp. 453월56. <i>Journal of the Geological Society</i> , 2000 , 157, 511-512	2.7	22
316	Mixed continental-marine biotas following the Permian-Triassic mass extinction in South and North China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2019 , 519, 95-107	2.9	22
315	The challenges to inferring the regulators of biodiversity in deep time. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2016 , 371, 20150216	5.8	21
314	The Epecies recognition hypothesis Hoes not explain the presence and evolution of exaggerated structures in non-avialan dinosaurs. <i>Journal of Zoology</i> , 2013 , 290, 172-180	2	21
313	Diversity dynamics of silurian-early carboniferous land plants in South china. <i>PLoS ONE</i> , 2013 , 8, e75706	3.7	21
312	New evidence for a trophic relationship between the dinosaurs Velociraptor and Protoceratops. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2010 , 291, 488-492	2.9	21
311	Diverse tetrapod trackways in the Lower Pennsylvanian Tynemouth Creek Formation, near St. Martins, southern New Brunswick, Canada. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2010 , 296, 1-13	2.9	21
310	A marine vertebrate fauna from the Late Triassic of Somerset, and a review of British placodonts. <i>Proceedings of the Geologists Association</i> , 2015 , 126, 564-581	1.1	20
309	Altered fluvial patterns in North China indicate rapid climate change linked to the Permian-Triassic mass extinction. <i>Scientific Reports</i> , 2019 , 9, 16818	4.9	20
308	A reassessment of the Pteraichnus ichnospecies from the Early Cretaceous of Soria Province, Spain. Journal of Vertebrate Paleontology, 2009 , 29, 487-497	1.7	20
307	Dictyodora and associated trace fossils from the Palaeozoic of Thuringia. <i>Lethaia</i> , 1982 , 15, 115-132	1.3	20
306	A specimen of Rhamphorhynchus with soft tissue preservation, stomach contents and a putative coprolite. <i>PeerJ</i> , 2015 , 3, e1191	3.1	20
305	Dating placentalia: Morphological clocks fail to close the molecular fossil gap. <i>Evolution; International Journal of Organic Evolution</i> , 2016 , 70, 873-86	3.8	20
304	Nothosaur foraging tracks from the Middle Triassic of southwestern China. <i>Nature Communications</i> , 2014 , 5, 3973	17.4	19
303	Calcretes, fluviolacustrine sediments and subsidence patterns in Permo-Triassic salt-walled minibasins of the south Urals, Russia. <i>Sedimentology</i> , 2012 , 59, 1659-1676	3.3	19
302	The first Lower Jurassic dinosaur from Scotland: limb bone of a ceratosaur theropod from Skye. <i>Scottish Journal of Geology</i> , 1995 , 31, 177-182	1.4	19
301	Evaluation of growth and energy storage as biological markers of DDT exposure in sailfin mollies. <i>Ecotoxicology and Environmental Safety</i> , 1994 , 29, 1-12	7	19
300	Carbamylated haemoglobin in chronic renal failure. <i>Clinica Chimica Acta</i> , 1988 , 178, 297-303	6.2	19

299	The Triassic. <i>Current Biology</i> , 2016 , 26, R1214-R1218	6.3	19
298	Taphonomy and palaeobiology of early Middle Triassic coprolites from the Luoping biota, southwest China: Implications for reconstruction of fossil food webs. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2017 , 474, 232-246	2.9	18
297	Live birth in an archosauromorph reptile. <i>Nature Communications</i> , 2017 , 8, 14445	17.4	18
296	The Early Origin of Feathers. <i>Trends in Ecology and Evolution</i> , 2019 , 34, 856-869	10.9	18
295	Convergence and functional evolution of longirostry in crocodylomorphs. <i>Palaeontology</i> , 2019 , 62, 867	-8:83	18
294	Latest Triassic marine sharks and bony fishes from a bone bed preserved in a burrow system, from Devon, UK. <i>Proceedings of the Geologists Association</i> , 2015 , 126, 130-142	1.1	18
293	Ichthyosauria from the Upper Lias of Strawberry Bank, England. <i>Palaeontology</i> , 2011 , 54, 1069-1093	2.9	18
292	Archosaur remains from the Otter Sandstone Formation (Middle Triassic, late Anisian) of Devon, southern UK. <i>Proceedings of the Geologists Association</i> , 2011 , 122, 25-33	1.1	18
291	Theropod teeth from the Middle-Upper Jurassic Shishugou Formation of northwest Xinjiang, China. <i>Journal of Vertebrate Paleontology</i> , 2011 , 31, 111-126	1.7	18
290	Head kinematics and feeding adaptations of the Permian and Triassic dicynodonts. <i>Journal of Vertebrate Paleontology</i> , 2008 , 28, 1120-1129	1.7	18
289	The prelude of the end-Permian mass extinction predates a postulated bolide impact. <i>International Journal of Earth Sciences</i> , 2007 , 96, 903-909	2.2	18
288	A sauropodomorph dinosaur from the Upper Triassic (Carman) of southern Brazil. <i>Comptes Rendus De La</i> Cada Des Sciences Earth & Planetary Sciences Saie II, Sciences De La Terre Et Des Plana es =, 1999, 329, 511-517		18
287	Evolutionary patterns from mass originations and mass extinctions. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1999 , 354, 463-9	5.8	18
286	Allozyme Genotype and Differential Resistance to Mercury Pollution in the Caddisfly, Nectopsyche albida. II. Multilocus Genotypes. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1992 , 49, 147-149	2.4	18
285	The relationships of the major group of mammals: New approaches. <i>Trends in Ecology and Evolution</i> , 1988 , 3, 40-5	10.9	18
284	The Chinese pareiasaurs. Zoological Journal of the Linnean Society, 2016 , 177, 813-853	2.4	18
283	The Rhaetian (Late Triassic) vertebrates of Hampstead Farm Quarry, Gloucestershire, UK. <i>Proceedings of the Geologists Association</i> , 2016 , 127, 478-505	1.1	17
282	Framboidal pyrite evidence for persistent low oxygen levels in shallow-marine facies of the Nanpanjiang Basin during the Permian-Triassic transition. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2018 , 511, 243-255	2.9	17

281	Carboniferous (Tournaisian) fish assemblages from the Isle of Bute, Scotland: systematics and palaeoecology. <i>Palaeontology</i> , 2014 , 57, 1215-1240	2.9	17
280	Marine flooding event in continental Triassic facies identified by a nothosaur and placodont bonebed (South Iberian Paleomargin). <i>Facies</i> , 2014 , 60, 277-293	1.8	17
279	Microvertebrates from the classic Rhaetian bone beds of Manor Farm Quarry, near Aust (Bristol, UK). <i>Proceedings of the Geologists Association</i> , 2015 , 126, 762-776	1.1	17
278	Vertebrates from the Late Triassic Thecodontosaurus-bearing rocks of Durdham Down, Clifton (Bristol, UK). <i>Proceedings of the Geologists Association</i> , 2014 , 125, 317-328	1.1	17
277	Deep marine trace fossil assemblages from the Lower Carboniferous of Menorca, Balearic Islands, western Mediterranean. <i>Geological Journal</i> , 1996 , 31, 235-258	1.7	17
276	Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China. <i>Scientific Reports</i> , 2017 , 7, 14112	4.9	16
275	Effects of body plan evolution on the hydrodynamic drag and energy requirements of swimming in ichthyosaurs. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2019 , 286, 20182786	4.4	16
274	Stepwise evolution of Paleozoic tracheophytes from South China: Contrasting leaf disparity and taxic diversity. <i>Earth-Science Reviews</i> , 2015 , 148, 77-93	10.2	16
273	A proposed framework for establishing and evaluating hypotheses about the behaviour of extinct organisms. <i>Journal of Zoology</i> , 2014 , 292, 260-267	2	16
272	Testing the fossil record: Sampling proxies and scaling in the British Triassic Uurassic. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2014 , 404, 1-11	2.9	16
271	A distinctive Late Triassic microvertebrate fissure fauna and a new species of Clevosaurus (Lepidosauria: Rhynchocephalia) from Woodleaze Quarry, Gloucestershire, UK. <i>Proceedings of the Geologists Association</i> , 2015 , 126, 402-416	1.1	16
270	Bedload abrasion and the in situ fragmentation of bivalve shells. Sedimentology, 2007, 54, 835-845	3.3	16
269	Longisquama fossil and feather morphology. <i>Science</i> , 2001 , 291, 1899-902	33.3	16
268	Fish and tetrapod communities across a marine to brackish salinity gradient in the Pennsylvanian (early Moscovian) Minto Formation of New Brunswick, Canada, and their palaeoecological and palaeographical implications. <i>Palaeontology</i> , 2016 , 59, 689-724	2.9	16
267	A new shrimp (Decapoda, Dendrobranchiata, Penaeoidea) from the Middle Triassic of Yunnan, southwest China. <i>Journal of Paleontology</i> , 2013 , 87, 603-611	1.1	15
266	Residual diversity estimates do not correct for sampling bias in palaeodiversity data. <i>Methods in Ecology and Evolution</i> , 2017 , 8, 453-459	7.7	15
265	Early Cretaceous (Berriasian) birds and pterosaurs from the Cornet bauxite mine, Romania. <i>Palaeontology</i> , 2011 , 54, 79-95	2.9	15
264	Crocodylomorph eggs and eggshells from the Adamantina Formation (Bauru Group), Upper Cretaceous of Brazil. <i>Palaeontology</i> , 2011 , 54, 309-321	2.9	15

(2016-2010)

263	On Fodonyx spenceri and a new rhynchosaur from the Middle Triassic of Devon. <i>Journal of Vertebrate Paleontology</i> , 2010 , 30, 1884-1888	1.7	15	
262	Is evolutionary history repeatedly rewritten in light of new fossil discoveries?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2011 , 278, 599-604	4.4	15	
261	Mayfly locomotory responses to endoparasitic infection and predator presence: the effects on predator encounter rate. <i>Freshwater Biology</i> , 1990 , 23, 363-371	3.1	15	
260	A new non-pterodactyloid pterosaur from the Late Jurassic of southern Germany. <i>PLoS ONE</i> , 2012 , 7, e39312	3.7	15	
259	Reptile-like physiology in Early Jurassic stem-mammals. <i>Nature Communications</i> , 2020 , 11, 5121	17.4	15	
258	Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2021 , 288, 20210069	4.4	15	
257	Environmental drivers of body size evolution in crocodile-line archosaurs. <i>Communications Biology</i> , 2021 , 4, 38	6.7	15	
256	On the purported presence of fossilized collagen fibres in an ichthyosaur and a theropod dinosaur. <i>Palaeontology</i> , 2017 , 60, 409-422	2.9	14	
255	Taxonomic reassessment of Clevosaurus latidens Fraser, 1993 (Lepidosauria, Rhynchocephalia) and rhynchocephalian phylogeny based on parsimony and Bayesian inference. <i>Journal of Paleontology</i> , 2018 , 92, 734-742	1.1	14	
254	The terrestrial fauna of the Late Triassic Pant-y-ffynnon Quarry fissures, South Wales, UK and a new species of Clevosaurus (Lepidosauria: Rhynchocephalia). <i>Proceedings of the Geologists Association</i> , 2018 , 129, 99-119	1.1	14	
253	On formation-based sampling proxies and why they should not be used to correct the fossil record. <i>Palaeontology</i> , 2018 , 61, 119-132	2.9	14	
252	Environmental instability prior to end-Permian mass extinction reflected in biotic and facies changes on shallow carbonate platforms of the Nanpanjiang Basin (South China). <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2019 , 519, 23-36	2.9	14	
251	The Bristol Dinosaur Project. <i>Proceedings of the Geologists Association</i> , 2012 , 123, 210-225	1.1	14	
250	The Late Triassic microvertebrate fauna of Tytherington, UK. <i>Proceedings of the Geologists Association</i> , 2012 , 123, 638-648	1.1	14	
249	A New Chinese Anurognathid Pterosaur and the Evolution of Pterosaurian Tail Lengths. <i>Acta Geologica Sinica</i> , 2012 , 86, 1317-1325	0.7	14	
248	FIRST OCCURRENCE OF FOOTPRINTS OF LARGE THERAPSIDS FROM THE UPPER PERMIAN OF EUROPEAN RUSSIA. <i>Palaeontology</i> , 2007 , 50, 641-652	2.9	14	
247	The Fossil Record of Early Tetrapods: Worker Effort and the End-Permian Mass Extinction. <i>Acta Palaeontologica Polonica</i> , 2010 , 55, 229-239		14	
246	Digit-only sauropod pes trackways from Chinaevidence of swimming or a preservational phenomenon?. <i>Scientific Reports</i> , 2016 , 6, 21138	4.9	14	

245	Dynamics of dental evolution in ornithopod dinosaurs. Scientific Reports, 2016, 6, 28904	4.9	13
244	Non-integumentary melanosomes can bias reconstructions of the colours of fossil vertebrates. <i>Nature Communications</i> , 2018 , 9, 2878	17.4	13
243	Reprint of Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction [Earth-Science Reviews, 2014, 137, 85-128]	10.2	13
242	Saltopus, a dinosauriform from the Upper Triassic of Scotland. <i>Earth and Environmental Science Transactions of the Royal Society of Edinburgh</i> , 2010 , 101, 285-299	0.9	13
241	Discussion on ecology of earliest reptiles inferred from basal Pennsylvanian trackwaysJournal, Vol. 164, 2007, 1113¶118. <i>Journal of the Geological Society</i> , 2008 , 165, 983-987	2.7	13
240	Interaction of cooling rate, warming rate, and extent of permeation of cryoprotectant in determining survival of isolated rat islets of Langerhans during cryopreservation. <i>Diabetes</i> , 1987 , 36, 59-65	0.9	13
239	Early Triassic terrestrial tetrapod fauna: a review. <i>Earth-Science Reviews</i> , 2020 , 210, 103331	10.2	13
238	Early Middle Triassic trace fossils from the Luoping Biota, southwestern China: Evidence of recovery from mass extinction. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2019 , 515, 6-22	2.9	13
237	Ontogenetic braincase development in (Dinosauria: Ceratopsia) using micro-computed tomography. <i>PeerJ</i> , 2019 , 7, e7217	3.1	12
236	Does exceptional preservation distort our view of disparity in the fossil record?. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2019 , 286, 20190091	4.4	12
235	The Chinese Pompeii? Death and destruction of dinosaurs in the Early Cretaceous of Lujiatun, NE China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2015 , 427, 89-99	2.9	12
234	Limuloid trackways from Permian-Triassic continental successions of North China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2018 , 508, 71-90	2.9	12
233	Gondolelloid multielement conodont apparatus (Nicoraella) from the Middle Triassic of Yunnan Province, southwestern China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2019 , 522, 98-110	2.9	12
232	Pneumatization of an immature azhdarchoid pterosaur. Cretaceous Research, 2013, 45, 16-24	1.8	12
231	THE AERODYNAMICS OF THE BRITISH LATE TRIASSIC KUEHNEOSAURIDAE. <i>Palaeontology</i> , 2008 , 51, 967-981	2.9	12
230	New models for the wing extension in pterosaurs. <i>Historical Biology</i> , 2008 , 20, 237-254	1.1	12
229	Cladistic analysis applied to the classification of volcanoes. <i>Bulletin of Volcanology</i> , 2007 , 70, 203-220	2.4	12
228	The history of the biosphere: Equilibrium and non-equilibrium models of global diversity. <i>Trends in Ecology and Evolution</i> , 1987 , 2, 153-6	10.9	12

227	The use of flexible synthetic rubbers for casts of complex fossils from natural moulds. <i>Geological Magazine</i> , 1981 , 118, 551-556	2	12
226	Morphological disparity in theropod jaws: comparing discrete characters and geometric morphometrics. <i>Palaeontology</i> , 2020 , 63, 283-299	2.9	12
225	Origins of Biodiversity. <i>PLoS Biology</i> , 2016 , 14, e2000724	9.7	12
224	A new Minisauripus site from the Lower Cretaceous of China: Tracks of small adults or juveniles?. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 2016 , 452, 28-39	2.9	12
223	Archosauromorph extinction selectivity during the Triassic urassic mass extinction. <i>Palaeontology</i> , 2019 , 62, 211-224	2.9	12
222	Cellular preservation of musculoskeletal specializations in the Cretaceous bird Confuciusornis. <i>Nature Communications</i> , 2017 , 8, 14779	17.4	11
221	Morphological innovation and the evolution of hadrosaurid dinosaurs. <i>Paleobiology</i> , 2019 , 45, 347-362	2.6	11
220	A taxonomic revision of Noripterus complicidens and Asian members of the Dsungaripteridae. <i>Geological Society Special Publication</i> , 2018 , 455, 149-157	1.7	11
219	Body length of bony fishes was not a selective factor during the biggest mass extinction of all time. <i>Palaeontology</i> , 2017 , 60, 727-741	2.9	11
218	Naming dinosaur species: the performance of prolific authors. <i>Journal of Vertebrate Paleontology</i> , 2010 , 30, 1478-1485	1.7	11
217	INFLUENCE OF SKIM MILK POWDER/RECODAN RS RATIO ON THE VISCOELASTICITY OF GROUNDNUT OIL-IN-WATER IMITATION MILKS. <i>Journal of Texture Studies</i> , 1980 , 11, 1-13	3.6	11
216	The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. <i>New Phytologist</i> , 2021 ,	9.8	11
215	Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds. <i>Nature Communications</i> , 2018 , 9, 2072	17.4	11
214	Protracted growth impedes the detection of sexual dimorphism in non-avian dinosaurs. <i>Palaeontology</i> , 2017 , 60, 535-545	2.9	10
213	Difficulties in assigning trace makers from theropodan bite marks: an example from a young diplodocoid sauropod. <i>Lethaia</i> , 2018 , 51, 456-466	1.3	10
212	Patterns of divergence in the morphology of ceratopsian dinosaurs: sympatry is not a driver of ornament evolution. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2018 , 285,	4.4	10
211	Microvertebrates from the basal Rhaetian Bone Bed (latest Triassic) at Aust Cliff, S.W. England. <i>Proceedings of the Geologists Association</i> , 2018 , 129, 635-653	1.1	10
210	A new mass mortality of juvenile Protoceratops and size-segregated aggregation behaviour in juvenile non-avian dinosaurs. <i>PLoS ONE</i> , 2014 , 9, e113306	3.7	10

209	Is sexual selection defined by dimorphism alone? A reply to Padian and Horner. <i>Trends in Ecology and Evolution</i> , 2013 , 28, 250-1	10.9	10
208	Completeness of the fossil record and the validity of sampling proxies: a case study from the Triassic of England and Wales. <i>Journal of the Geological Society</i> , 2013 , 170, 291-300	2.7	10
207	A new Late Jurassic turtle from Spain: phylogenetic implications, taphonomy and palaeoecology. <i>Palaeontology</i> , 2011 , 54, 1393-1414	2.9	10
206	Testing the marine and continental fossil records: Comment and Reply. <i>Geology</i> , 1996 , 24, 381	5	10
205	Ectothermy and the Success of Dinosaurs. <i>Evolution; International Journal of Organic Evolution</i> , 1979 , 33, 983	3.8	10
204	Poetry for children: a neglected art. <i>Childrens Literature in Education</i> , 1978 , 9, 111-126	0.2	10
203	Body dimensions of the extinct giant shark Otodus megalodon: a 2D reconstruction. <i>Scientific Reports</i> , 2020 , 10, 14596	4.9	10
202	Dentary groove morphology does not distinguish Nanotyrannus a valid taxon of tyrannosauroid dinosaur. Comment on: Distribution of the dentary groove of theropod dinosaurs: Implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et lal., 1988 Cretaceous	1.8	10
201	Microvertebrates from multiple bone beds in the Rhaetian of the M4M5 motorway junction, South Gloucestershire, U.K <i>Proceedings of the Geologists Association</i> , 2016 , 127, 464-477	1.1	10
200	Multifaceted disparity approach reveals dinosaur herbivory flourished before the end-Cretaceous mass extinction. <i>Paleobiology</i> , 2018 , 44, 620-637	2.6	10
199	The first discovery of crinoids and cephalopod hooklets in the British Triassic. <i>Proceedings of the Geologists Association</i> , 2017 , 128, 360-373	1.1	9
198	Predicting biotic responses to future climate warming with classic ecogeographic rules. <i>Current Biology</i> , 2020 , 30, R744-R749	6.3	9
197	The Rhaetian vertebrates of Chipping Sodbury, South Gloucestershire, UK, a comparative study. <i>Proceedings of the Geologists Association</i> , 2016 , 127, 40-52	1.1	9
196	Middle Triassic conodont apparatus architecture revealed by synchrotron X-ray microtomography. <i>Palaeoworld</i> , 2019 , 28, 429-440	1.8	9
195	The first specimen of the Middle Triassic Phalarodon atavus (Ichthyosauria: Mixosauridae) from South China, showing postcranial anatomy and peri-Tethyan distribution. <i>Palaeontology</i> , 2013 , 56, 849-8	368	9
194	Pterosaur Research: Recent Advances and a Future Revolution. <i>Acta Geologica Sinica</i> , 2012 , 86, 1366-13	7.6. 7	9
193	Pterosaurs as a food source for small dromaeosaurs. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2012 , 331-332, 27-30	2.9	9
192	Decoupling of morphological disparity and taxic diversity during the adaptive radiation of anomodont therapsids. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2013 , 280, 20132414	4.4	9

191	Radiation and extinction: investigating clade dynamics in deep time. <i>Biological Journal of the Linnean Society</i> , 2016 , 118, 6-12	1.9	9
190	Gabaleryon, a new genus of widespread early Toarcian polychelidan lobsters. <i>Journal of Systematic Palaeontology</i> , 2017 , 15, 205-222	2.3	8
189	The wingtips of the pterosaurs: Anatomy, aeronautical function and ecological implications. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2015 , 440, 431-439	2.9	8
188	Ontogenetic endocranial shape change in alligators and ostriches and implications for the development of the non-avian dinosaur endocranium. <i>Anatomical Record</i> , 2021 , 304, 1759-1775	2.1	8
187	Intensifying aeolian activity following the end-Permian mass extinction: Evidence from the Late Permian Early Triassic terrestrial sedimentary record of the Ordos Basin, North China. <i>Sedimentology</i> , 2020 , 67, 2691-2720	3.3	8
186	The mosasaur fossil record through the lens of fossil completeness. <i>Palaeontology</i> , 2019 , 62, 51-75	2.9	8
185	Origins of biodiversity. <i>Palaeontology</i> , 2013 , 56, 1-7	2.9	8
184	Trophic and tectonic limits to the global increase of marine invertebrate diversity. <i>Scientific Reports</i> , 2017 , 7, 15969	4.9	8
183	Murchison's first sighting of the Permian, at Vyazniki in 1841. <i>Proceedings of the Geologists Association</i> , 2010 , 121, 313-318	1.1	8
182	Robust dinosaur phylogeny?. <i>Nature</i> , 1998 , 396, 423-424	50.4	8
182	Robust dinosaur phylogeny?. <i>Nature</i> , 1998 , 396, 423-424 Paleontological Evidence to Date the Tree of Life. <i>Molecular Biology and Evolution</i> , 2006 , 24, 889-891	50.4	8
181	Paleontological Evidence to Date the Tree of Life. <i>Molecular Biology and Evolution</i> , 2006 , 24, 889-891 Tetrapod tracks from the Mauch Chunk Formation (middle to upper Mississippian) of Pennsylvania,	8.3	8
181 180	Paleontological Evidence to Date the Tree of Life. <i>Molecular Biology and Evolution</i> , 2006 , 24, 889-891 Tetrapod tracks from the Mauch Chunk Formation (middle to upper Mississippian) of Pennsylvania, U.S.A. <i>Proceedings of the Academy of Natural Sciences of Philadelphia</i> , 2007 , 156, 199-209 Diversity in rhynchocephalian Clevosaurus skulls based on CT reconstruction of two Late Triassic	8.3	8
181 180 179	Paleontological Evidence to Date the Tree of Life. <i>Molecular Biology and Evolution</i> , 2006 , 24, 889-891 Tetrapod tracks from the Mauch Chunk Formation (middle to upper Mississippian) of Pennsylvania, U.S.A. <i>Proceedings of the Academy of Natural Sciences of Philadelphia</i> , 2007 , 156, 199-209 Diversity in rhynchocephalian Clevosaurus skulls based on CT reconstruction of two Late Triassic species from Great Britain. <i>Acta Palaeontologica Polonica</i> ,64, The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. <i>Gondwana</i>	8.3	8 8 8
181 180 179	Paleontological Evidence to Date the Tree of Life. <i>Molecular Biology and Evolution</i> , 2006 , 24, 889-891 Tetrapod tracks from the Mauch Chunk Formation (middle to upper Mississippian) of Pennsylvania, U.S.A. <i>Proceedings of the Academy of Natural Sciences of Philadelphia</i> , 2007 , 156, 199-209 Diversity in rhynchocephalian Clevosaurus skulls based on CT reconstruction of two Late Triassic species from Great Britain. <i>Acta Palaeontologica Polonica</i> ,64, The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. <i>Gondwana Research</i> , 2020 , Migration controls extinction and survival patterns of foraminifers during the Permian-Triassic	8.3 1.1 5.1	8 8 8
181 180 179 178	Paleontological Evidence to Date the Tree of Life. <i>Molecular Biology and Evolution</i> , 2006 , 24, 889-891 Tetrapod tracks from the Mauch Chunk Formation (middle to upper Mississippian) of Pennsylvania, U.S.A. <i>Proceedings of the Academy of Natural Sciences of Philadelphia</i> , 2007 , 156, 199-209 Diversity in rhynchocephalian Clevosaurus skulls based on CT reconstruction of two Late Triassic species from Great Britain. <i>Acta Palaeontologica Polonica</i> ,64, The origin of endothermy in synapsids and archosaurs and arms races in the Triassic. <i>Gondwana Research</i> , 2020 , Migration controls extinction and survival patterns of foraminifers during the Permian-Triassic crisis in South China. <i>Earth-Science Reviews</i> , 2020 , 209, 103329 Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and	8.3 1.1 5.1 10.2	8 8 8 8

173	A new species of Platysiagum from the Luoping Biota (Anisian, Middle Triassic, Yunnan, South China) reveals the relationship between Platysiagidae and Neopterygii. <i>Geological Magazine</i> , 2019 , 156, 669-682	2	8
172	Early origins of modern birds and mammals: molecules vs. morphology 1999 , 21, 1043		8
171	The Early Triassic Jurong fish fauna, South China: Age, anatomy, taphonomy, and global correlation. <i>Global and Planetary Change</i> , 2019 , 180, 33-50	4.2	7
170	A Rhaetian microvertebrate fauna from Stowey Quarry, Somerset, U.K <i>Proceedings of the Geologists Association</i> , 2018 , 129, 144-158	1.1	7
169	Naming the Bristol dinosaur, Thecodontosaurus: politics and science in the 1830s. <i>Proceedings of the Geologists Association</i> , 2012 , 123, 766-778	1.1	7
168	Modern avian radiation across the Cretaceous-Paleogene boundary. <i>Auk</i> , 2007 , 124, 339	2.1	7
167	The role of "go no-go" decisions in TB vaccine development. <i>Microbes and Infection</i> , 2005 , 7, 899-904	9.3	7
166	The effect ofn-decanol on solubilization of water-in-oil microemulsions and stability of lamellar liquid crystals of alkylphenol ethoxylates. <i>JAOCS, Journal of the American Oil ChemistscSociety</i> , 1996 , 73, 15-19	1.8	7
165	Ecological succession among late palaeozoic and mesozoic tetrapods. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 1979 , 26, 127-150	2.9	7
164	ECTOTHERMY AND THE SUCCESS OF DINOSAURS. <i>Evolution; International Journal of Organic Evolution</i> , 1979 , 33, 983-997	3.8	7
163	Normal Mode Uncoupling of Systems with Time Varying Stiffness. <i>Journal of Mechanical Design</i> , 1980 , 102, 379-383		7
162	Progressionism in the 1850s: Lyell, Owen, Mantell and the Elgin fossil reptile Leptopleuron (Telerpeton). <i>Archives of Natural History</i> , 1982 , 11, 123-136	0.1	7
161	Late Triassic island dwarfs? Terrestrial tetrapods of the Ruthin fissure (South Wales, UK) including a new genus of procolophonid. <i>Proceedings of the Geologists Association</i> , 2020 , 131, 535-561	1.1	7
160	Osteological redescription of the Late Triassic sauropodomorph dinosaur Thecodontosaurus antiquus based on new material from Tytherington, southwestern England. <i>Journal of Vertebrate Paleontology</i> , 2020 , 40, e1770774	1.7	7
159	Diverse earliest Triassic ostracod fauna of the non-microbialite-bearing shallow marine carbonates of the Yangou section, South China. <i>Lethaia</i> , 2019 , 52, 583-596	1.3	6
158	The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus. <i>Zoological Journal of the Linnean Society</i> , 2020 ,	2.4	6
157	Response to Comment on "A Jurassic ornithischian dinosaur from Siberia with both feathers and scales". <i>Science</i> , 2014 , 346, 434	33.3	6
156	Evolution. How birds became birds. <i>Science</i> , 2014 , 345, 508-9	33.3	6

(2020-2013)

155	Primary feather lengths may not be important for inferring the flight styles of Mesozoic birds. <i>Lethaia</i> , 2013 , 46, 146-153	1.3	6
154	An Annotated and Illustrated Catalogue of Solnhofen (Upper Jurassic, Germany) Pterosaur Specimens at Carnegie Museum of Natural History. <i>Annals of Carnegie Museum</i> , 2013 , 82, 165-191	1.4	6
153	Coelacanths from the Middle Triassic Luoping Biota, Yunnan, South China, with the earliest evidence of ovoviviparity. <i>Acta Palaeontologica Polonica</i> , 2012 ,		6
152	Polar dinosaurs and ancient climates. <i>Trends in Ecology and Evolution</i> , 1991 , 6, 28-30	10.9	6
151	Geographic variation in the garter snakes (Thamnophis sirtalis) of the north-central United States, a multivariate study. <i>Zoological Journal of the Linnean Society</i> , 1980 , 68, 307-323	2.4	6
150	Evolution of ecospace occupancy by Mesozoic marine tetrapods. <i>Palaeontology</i> , 2021 , 64, 31-49	2.9	6
149	The oldest lambeosaurine dinosaur from Europe: Insights into the arrival of Tsintaosaurini. <i>Cretaceous Research</i> , 2020 , 107, 104286	1.8	6
148	The Middle Triassic (Anisian) Otter Sandstone biota (Devon, UK): review, recent discoveries and ways ahead. <i>Proceedings of the Geologists Association</i> , 2019 , 130, 294-306	1.1	6
147	A new specimen of the pterosaur Rhamphorhynchus. Historical Biology, 2012, 24, 581-585	1.1	5
146	A re-evaluation of goniopholidid crocodylomorph material from Central Asia: Biogeographic and phylogenetic implications. <i>Acta Palaeontologica Polonica</i> , 2013 ,		5
145	Presidential Address 2007: The end-Permian mass extinction Levents on land in Russia. <i>Proceedings of the Geologists Association</i> , 2008 , 119, 119-136	1.1	5
144	Mass extinctions and periodicity. <i>Science</i> , 1995 , 269, 617-9	33.3	5
143	The evolutionary significance of mass extinctions. <i>Trends in Ecology and Evolution</i> , 1986 , 1, 127-30	10.9	5
142	Children's responses to stories. <i>Children Literature in Education</i> , 1979 , 10, 68-85	0.2	5
141	The Application of the Ritz Averaging Method to Determining the Response of Systems with Time Varying Stiffness to Harmonic Excitation. <i>Journal of Mechanical Design</i> , 1980 , 102, 384-390		5
140	Bite marks of a large theropod on an hadrosaur limb bone from Coahuila, Mexico. <i>Boletin De La Sociedad Geologica Mexicana</i> , 2012 , 64, 155-159	1.7	5
139	Ontogenetic stages of ceratopsian dinosaur Psittacosaurus in bone histology. <i>Acta Palaeontologica Polonica</i> ,64,		5
138	Anatomy of a Late Triassic Bristol fissure: Tytherington fissure 2. <i>Proceedings of the Geologists Association</i> , 2020 , 131, 73-93	1.1	5

137	Variable preservation potential and richness in the fossil record of vertebrates. <i>Palaeontology</i> , 2020 , 63, 313-329	2.9	5
136	An Enigmatic Neodiapsid Reptile from the Middle Triassic of England. <i>Journal of Vertebrate Paleontology</i> , 2020 , 40, e1781143	1.7	5
135	Verifiability of genus-level classification under quantification and parsimony theories: a case study of follicucullid radiolarians. <i>Paleobiology</i> , 2020 , 46, 337-355	2.6	5
134	Ecomorphological diversification of squamates in the Cretaceous. <i>Royal Society Open Science</i> , 2021 , 8, 201961	3.3	5
133	The stem group teleost Pachycormus (Pachycormiformes: Pachycormidae) from the Upper Lias (Lower Jurassic) of Strawberry Bank, UK. <i>Palaontologische Zeitschrift</i> , 2019 , 93, 285-302	1.2	5
132	Palaeoenvironmental reconstruction and biostratinomic analysis of the Jurassic Yanliao Lagerst i te in northeastern China. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2019 , 514, 739-753	2.9	5
131	Decoupling of morphological disparity and taxonomic diversity during the end-Permian mass extinction. <i>Paleobiology</i> , 2021 , 47, 402-417	2.6	5
130	Assessing sampling of the fossil record in a geographically and stratigraphically constrained dataset: the Chalk Group of Hampshire, southern UK. <i>Journal of the Geological Society</i> , 2017 , 174, 509-5	2 ² 1 ⁷	4
129	A new fish species of the genus Isadia (Actinopterygii, Eurynotoidiformes) from the new locality on the Malaya Northern Dvina river (terminal Permian, Vologda Region). <i>Paleontological Journal</i> , 2015 , 49, 615-626	0.6	4
128	Fish and crab coprolites from the latest Triassic of the UK: From Buckland to the Mesozoic Marine Revolution. <i>Proceedings of the Geologists Association</i> , 2020 , 131, 699-721	1.1	4
127	No gap in the Middle Permian record of terrestrial vertebrates: REPLY. <i>Geology</i> , 2013 , 41, e294-e294	5	4
126	Filling the ceratosaur gap: A new ceratosaurian theropod from the Early Cretaceous of Spain. <i>Acta Palaeontologica Polonica</i> , 2012 ,		4
125	Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. <i>Journal of Clinical Investigation</i> , 2005 , 115, 2961-2961	15.9	4
124	Canons Ancient and Modern: The texts we teach. <i>Educational Review</i> , 2000 , 52, 269-277	1.8	4
123	The Discipline of Literary Response: approaches to poetry with L2 students. <i>Educational Review</i> , 1995 , 47, 333-342	1.8	4
122	New Methods for Mayfly Instar Number Determination and Growth Curve Estimation. <i>Journal of Freshwater Ecology</i> , 1988 , 4, 361-367	1.4	4
121	Epidemic cervical myalgia. <i>Lancet, The</i> , 1960 , 1, 1275-7	40	4
120	"Too Many Books": Book Ownership and Cultural Identity in the 1920s. <i>American Quarterly</i> , 1997 , 49, 268-297	0.5	4

(2021-2020)

119	Footprints of marine reptiles from the Middle Triassic (Anisian-Ladinian) Guanling Formation of Guizhou Province, southwestern China: The earliest evidence of synchronous style of swimming. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 558, 109943	2.9	4
118	An effect size statistical framework for investigating sexual dimorphism in non-avian dinosaurs and other extinct taxa. <i>Biological Journal of the Linnean Society</i> , 2020 , 131, 231-273	1.9	4
117	Growth and miniaturization among alvarezsauroid dinosaurs. <i>Current Biology</i> , 2021 , 31, 3687-3693.e5	6.3	4
116	Microvertebrates from the Wadhurst Clay Formation (Lower Cretaceous) of Ashdown Brickworks, East Sussex, UK. <i>Proceedings of the Geologists Association</i> , 2019 , 130, 752-769	1.1	3
115	Mesozoic echinoid diversity in Portugal: Investigating fossil record quality and environmental constraints on a regional scale. <i>Palaeogeography, Palaeoclimatology, Palaeoecology,</i> 2015 , 424, 132-146	2.9	3
114	Beginning of Mesozoic marine overstep of the Mendips: The Rhaetian and its fauna at Hapsford Bridge, Vallis Vale, Somerset, UK. <i>Proceedings of the Geologists Association</i> , 2020 , 131, 578-594	1.1	3
113	Geological control on dinosaursIrise to dominance: Late Triassic ecosystem stress by relative sea level change. <i>Terra Nova</i> , 2020 , 32, 434-441	3	3
112	Biomechanical properties of the jaws of two species of Clevosaurus and a reanalysis of rhynchocephalian dentary morphospace. <i>Palaeontology</i> , 2020 , 63, 919-939	2.9	3
111	Three-dimensional tomographic study of dermal armour from the tail of the Triassic aetosaur Stagonolepis robertsoni. <i>Scottish Journal of Geology</i> , 2020 , 56, 55-62	1.4	3
110	Russia U K Collaboration in Paleontology: Past, Present, and Future. <i>Paleontological Journal</i> , 2017 , 51, 576-599	0.6	3
109	Dinosaur fossils with soft parts. <i>Trends in Ecology and Evolution</i> , 1998 , 13, 303-4	10.9	3
108	Preface: History of Biodiversity. <i>Geological Journal</i> , 2001 , 36, 185-186	1.7	3
107	Impact in the Caribbean and death of the dinosaurs. <i>Geology Today</i> , 1994 , 10, 222-227	0.4	3
106	Mass extinctions in the fossil record of late Palaeozoic and Mesozoic tetrapods 1990 , 239-251		3
105	The nature of an adaptive radiation. <i>Trends in Ecology and Evolution</i> , 1988 , 3, 127-128	10.9	3
104	The Fossil Record43-59		3
103	Niche partitioning shaped herbivore macroevolution through the early Mesozoic. <i>Nature Communications</i> , 2021 , 12, 2796	17.4	3
102	Testing the relationship between marine transgression and evolving island palaeogeography using 3D GIS: an example from the Late Triassic of SW England. <i>Journal of the Geological Society</i> , 2021 , 178, jgs2020-158	2.7	3

101	New perspectives on pterosaur palaeobiology. <i>Geological Society Special Publication</i> , 2018 , 455, 1-6	1.7	3
100	Response to: Phylogenetic placement, developmental trajectories and evolutionary implications of a feathered dinosaur tail in Mid-Cretaceous amber. <i>Current Biology</i> , 2017 , 27, R216-R217	6.3	2
99	A new crurotarsan archosaur from the Late Triassic of South Wales. <i>Journal of Vertebrate Paleontology</i> , 2019 , 39, e1645147	1.7	2
98	The impact of the Pull of the Recent on extant elasmobranchs. <i>Palaeontology</i> , 2020 , 63, 369-374	2.9	2
97	Reply to the comment on Chu et al., [lilliput effect in freshwater ostracods during the Permian Triassic extinction [Palaeogeography, Palaeoclimatology, Palaeoecology 435 (2015): 38 [2]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440, 863-865	2.9	2
96	A mysterious giant ichthyosaur from the lowermost Jurassic of Wales. <i>Acta Palaeontologica Polonica</i> , 2014 ,		2
95	Juvenile-only clusters and behaviour of the Early Cretaceous dinosaur Psittacosaurus. <i>Acta Palaeontologica Polonica</i> , 2013 ,		2
94	On the flux ratio method and the number of valid species names. <i>Paleobiology</i> , 2010 , 36, 516-518	2.6	2
93	Dinosaurs. Current Biology, 2009, 19, R318-23	6.3	2
92	The completeness of the fossil record. <i>Significance</i> , 2009 , 6, 117-121		2
	The completeness of the rossic record. Significance, 2005, 0, 117-121	0.5	2
91	Electrophoretic evidence of esterase inhibition in larval caddisflies exposed to inorganic mercury. Water Environment Research, 1997, 69, 240-243	2.8	2
	Electrophoretic evidence of esterase inhibition in larval caddisflies exposed to inorganic mercury.		2
91	Electrophoretic evidence of esterase inhibition in larval caddisflies exposed to inorganic mercury. Water Environment Research, 1997, 69, 240-243 Analysing diversification through time: reply to Sepkoski and Miller. Trends in Ecology and Evolution,	2.8	2
91 90	Electrophoretic evidence of esterase inhibition in larval caddisflies exposed to inorganic mercury. Water Environment Research, 1997, 69, 240-243 Analysing diversification through time: reply to Sepkoski and Miller. Trends in Ecology and Evolution, 1998, 13, 201	2.8	2
91 90 89	Electrophoretic evidence of esterase inhibition in larval caddisflies exposed to inorganic mercury. Water Environment Research, 1997, 69, 240-243 Analysing diversification through time: reply to Sepkoski and Miller. Trends in Ecology and Evolution, 1998, 13, 201 Reading Biography. Journal of Aesthetic Education, 2007, 41, 77-88 Literary Biography: The Cinderella Story of Literary Studies. Journal of Aesthetic Education, 2005,	2.8	2 2
91 90 89 88	Electrophoretic evidence of esterase inhibition in larval caddisflies exposed to inorganic mercury. Water Environment Research, 1997, 69, 240-243 Analysing diversification through time: reply to Sepkoski and Miller. Trends in Ecology and Evolution, 1998, 13, 201 Reading Biography. Journal of Aesthetic Education, 2007, 41, 77-88 Literary Biography: The Cinderella Story of Literary Studies. Journal of Aesthetic Education, 2005, 39, 44-57	2.8 10.9 0.5	2 2 2
91 90 89 88 87	Electrophoretic evidence of esterase inhibition in larval caddisflies exposed to inorganic mercury. Water Environment Research, 1997, 69, 240-243 Analysing diversification through time: reply to Sepkoski and Miller. Trends in Ecology and Evolution, 1998, 13, 201 Reading Biography. Journal of Aesthetic Education, 2007, 41, 77-88 Literary Biography: The Cinderella Story of Literary Studies. Journal of Aesthetic Education, 2005, 39, 44-57 Painting Shakespeare. Journal of Aesthetic Education, 1998, 32, 53 The image of childhood: Representations of the child in painting and literature, 17001900.	2.8 10.9 0.5 0.5	2 2 2 2

(2020-1990)

83	Phylogenetic trees and the unification of systematic biology. <i>Trends in Ecology and Evolution</i> , 1990 , 5, 393-394	10.9	2
82	Joints of the crocodile-reversed archosaurs. <i>Nature</i> , 1988 , 331, 218-218	50.4	2
81	The conservation and use of fossil vertebrate sites: British fossil reptile sites. <i>Proceedings of the Geologists Association</i> , 1985 , 96, 1-6	1.1	2
80	Slow and fast evolutionary rates in the history of lepidosaurs. <i>Palaeontology</i> ,	2.9	2
79	Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria 1995 , 14, 411		2
7 ⁸	Bite marks on the frill of a juvenile from the Late Cretaceous Dinosaur Provincial Park Formation, Alberta, Canada. <i>PeerJ</i> , 2018 , 6, e5748	3.1	2
77	Plant resilience and extinctions through the Permian to Middle Triassic on the North China Block: A multilevel diversity analysis of macrofossil records. <i>Earth-Science Reviews</i> , 2021 , 103846	10.2	2
76	The diversity of Triassic South American sphenodontians: a new basal form, clevosaurs, and a revision of rhynchocephalian phylogeny. <i>Journal of Systematic Palaeontology</i> ,1-34	2.3	2
75	The History of Life 2008 ,		2
74	Ecological dynamics of terrestrial and freshwater ecosystems across three mid-Phanerozoic mass extinctions from northwest China. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2021 , 288, 20	21 01 48	2
73	Microvertebrates from the Rhaetian basal bone bed of Saltford, near Bath, SW England. <i>Proceedings of the Geologists Association</i> , 2021 , 132, 174-187	1.1	2
72	Overview of the MAGNUS project 2016 ,		2
71	Archibald Geikie and the Elgin reptiles. <i>Geological Society Special Publication</i> , 2019 , 480, 353-359	1.7	2
70	Reply to Walkden, Fraser and Simms (2021): The age and formation mechanisms of Late Triassic fissure deposits, Gloucestershire, England: Comments on Mussini, G., Whiteside, D. I., Hildebrandt C. and Benton M.J <i>Proceedings of the Geologists Association</i> , 2021 , 132, 138-141	1.1	2
69	Biodiversity on land and in the sea 2001 , 36, 211		2
68	Leptolepid otoliths from the Hauterivian (Lower Cretaceous) Lower Weald Clay (southern England). <i>Proceedings of the Geologists Association</i> , 2017 , 128, 613-625	1.1	1
67	Apparatus architecture of the conodont Nicoraella kockeli (Gondolelloidea, Prioniodinina) constrains functional interpretations. <i>Palaeontology</i> , 2019 , 62, 823-835	2.9	1
66	Experimental investigation of insect deposition in lentic environments and Implications for		

65	Defining the discipline of geobiology. <i>National Science Review</i> , 2014 , 1, 483-485	10.8	1
64	Osteology of the alvarezsauroid Linhenykus monodactylus from the Upper Cretaceous Wulansuhai Formation of Inner Mongolia, China, and comments on alvarezsauroid biogeography. <i>Acta Palaeontologica Polonica</i> , 2011 ,		1
63	Reply to Dyke and Naish: European alvarezsauroids do not change the picture. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, E148-E148	11.5	1
62	Recovery of Vertebrate faunas from the end-Permian mass extinction. <i>Journal of Earth Science</i> (Wuhan, China), 2010 , 21, 111-114	2.2	1
61	Teen Films: An Annotated Bibliography. <i>Journal of Popular Film and Television</i> , 1997 , 25, 83-88	0.1	1
60	Essay Review: Poetry for Children B repositions and Possessives. <i>Children's Literature in Education</i> , 1997 , 28, 105-109	0.2	1
59	Modern avian radiation across the Cretaceous-Paleogene boundary. Auk, 2007, 124, 339-341	2.1	1
58	Dictyodora and associated trace fossils from the Palaeozoic of Thuringia. <i>Lethaia</i> , 2007 , 15, 115-132	1.3	1
57	Late Permian Discordichthyiformes (Osteichthyes) from European Russia. <i>Paleontological Journal</i> , 2006 , 40, 564-571	0.6	1
56	Response. <i>Science</i> , 1995 , 269, 618-9	33.3	1
56 55	Response. Science, 1995, 269, 618-9 Lower Silurian trace fossils and the Eocoelia community in the Tortworth Inlier, SW England. Proceedings of the Geologists Association, 1996, 107, 199-208	33.3	1
	Lower Silurian trace fossils and the Eocoelia community in the Tortworth Inlier, SW England.	1.1	
55	Lower Silurian trace fossils and the Eocoelia community in the Tortworth Inlier, SW England. Proceedings of the Geologists Association, 1996, 107, 199-208	1.1	1
55 54	Lower Silurian trace fossils and the Eocoelia community in the Tortworth Inlier, SW England. Proceedings of the Geologists Association, 1996, 107, 199-208 Professor R. J. G. Savage: an appreciation. Zoological Journal of the Linnean Society, 1994, 112, 3-12	1.1	1
55 54 53	Lower Silurian trace fossils and the Eocoelia community in the Tortworth Inlier, SW England. <i>Proceedings of the Geologists Association</i> , 1996 , 107, 199-208 Professor R. J. G. Savage: an appreciation. <i>Zoological Journal of the Linnean Society</i> , 1994 , 112, 3-12 The evolution of perissodactyls. <i>Trends in Ecology and Evolution</i> , 1990 , 5, 347	1.1 2.4 10.9	1 1
55 54 53 52	Lower Silurian trace fossils and the Eocoelia community in the Tortworth Inlier, SW England. <i>Proceedings of the Geologists Association</i> , 1996 , 107, 199-208 Professor R. J. G. Savage: an appreciation. <i>Zoological Journal of the Linnean Society</i> , 1994 , 112, 3-12 The evolution of perissodactyls. <i>Trends in Ecology and Evolution</i> , 1990 , 5, 347 Mothballs?. <i>Geology Today</i> , 1985 , 1, 135-136	1.1 2.4 10.9	1 1 1 1 1
55 54 53 52 51	Lower Silurian trace fossils and the Eocoelia community in the Tortworth Inlier, SW England. Proceedings of the Geologists Association, 1996, 107, 199-208 Professor R. J. G. Savage: an appreciation. Zoological Journal of the Linnean Society, 1994, 112, 3-12 The evolution of perissodactyls. Trends in Ecology and Evolution, 1990, 5, 347 Mothballs?. Geology Today, 1985, 1, 135-136 The phylogeny and classification of tetrapods. Lethaia, 1986, 19, 160-160	1.1 2.4 10.9 0.4	1 1 1 1 1

(2016-2021)

47	Phylogenetic classification and evolution of Early Triassic conodonts. <i>Palaeogeography, Palaeoclimatology, Palaeoecology</i> , 2021 , 110731	2.9	1
46	Response to Delhey et al. <i>Current Biology</i> , 2020 , 30, R1408	6.3	1
45	150 million years of sustained increase in pterosaur flight efficiency. <i>Nature</i> , 2020 , 587, 83-86	50.4	1
44	The naming of the Permian System. Journal of the Geological Society,jgs2021-037	2.7	1
43	Reply to comments on: Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil?. <i>Palaeontology</i> , 2019 , 62, 335-338	2.9	1
42	Strong support for a heterogeneous speciation decline model in Dinosauria: a response to claims made by Bonsor . (2020). <i>Royal Society Open Science</i> , 2021 , 8, 202143	3.3	1
41	Triassic tragedy bone bed in the Otter Sandstone of East Devon, south-west England. <i>Geology Today</i> , 2021 , 37, 176-183	0.4	1
40	Large size in aquatic tetrapods compensates for high drag caused by extreme body proportions <i>Communications Biology</i> , 2022 , 5, 380	6.7	1
39	Global diversity dynamics in the fossil record are regionally heterogeneous <i>Nature Communications</i> , 2022 , 13, 2751	17.4	1
38	A new millipede (Diplopoda, Helminthomorpha) from the Middle Triassic Luoping biota of Yunnan, Southwest China. <i>Journal of Paleontology</i> , 2018 , 92, 478-487	1.1	О
37	If it was good enough for Darwin Proceedings of the Geologists Association, 2010, 121, 3	1.1	О
36	Walking with early dinosaurs: appendicular myology of the Late Triassic sauropodomorph <i>Royal Society Open Science</i> , 2022 , 9, 211356	3.3	O
35	A thing with feathers. Current Biology, 2021, 31, R1406-R1409	6.3	0
34	Testing for a dietary shift in the Early Cretaceous ceratopsian dinosaur Psittacosaurus lujiatunensis. <i>Palaeontology</i> , 2021 , 64, 371-384	2.9	0
33	Evolution: convergence in dinosaur crests. <i>Current Biology</i> , 2015 , 25, R494-6	6.3	
32	Reprint of: G ondolelloid multielement conodont apparatus (Nicoraella) from the Middle Triassic of Yunnan Province, southwestern China \(Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 549, 109670	2.9	
31	Palaeontology: Scrapes of Dinosaur Courtship. <i>Current Biology</i> , 2016 , 26, R237-8	6.3	
30	Evolution on the Large Scale. <i>Trends in Ecology and Evolution</i> , 2016 , 31, 331-332	10.9	

29	Mamulichthys ignotus gen. et sp. nov., a new actinopterygian from the Middle Permian of the southeastern East Europe Platform. <i>Paleontological Journal</i> , 2014 , 48, 201-208	0.6
28	Paleo bird spotting. Current Biology, 2013 , 23, R331-R332	6.3
27	Evolution and deep time. <i>Trends in Ecology and Evolution</i> , 2013 , 28, 14-15	10.9
26	Fossilization of soft tissues. <i>National Science Review</i> , 2017 , 4, 512-513	10.8
25	Biogeography and geometric morphometrics of conchostracans (Crustacea, Branchiopoda) from the Late Triassic fissure deposits of Cromhall Quarry, UK. <i>Palaeontology</i> , 2017 , 60, 761-761	2.9
24	VI.13. Causes and Consequences of Extinction 2013 , 579-585	
23	Interpreting the autopodia of tetrapods: interphalangeal lines hinge on too many assumptions. <i>Historical Biology</i> , 2009 , 21, 67-77	1.1
22	Capturing Performance at London Theatre Museum. Museum International, 1997, 49, 25-31	0.4
21	Form and Function and Phylogeny A review by M. J. Benton. <i>Journal of Evolutionary Biology</i> , 1997 , 10, 682-683	2.3
20	Evolution on Two Scales A review by M. J. Benton. <i>Journal of Evolutionary Biology</i> , 1998 , 11, 126-128	2.3
19	A review of Fins into Limbs, edited by Brian Hall. Evolution & Development, 2008, 10, 258-259	2.6
18	Forty Years on: Touchstones Now. <i>Childrens Literature in Education</i> , 2008 , 39, 135-140	0.2
17	Alick D. Walker 1925¶999: an appreciation. Zoological Journal of the Linnean Society, 2002, 136, 1-5	2.4
16	Reply to easteal. <i>BioEssays</i> , 1999 , 21, 1059	4.1
15	Reply from m.j. Benton. <i>Trends in Ecology and Evolution</i> , 1995 , 10, 37	10.9
14	The evolution and extinction of the dinosaurs. <i>Trends in Ecology and Evolution</i> , 1996 , 11, 442-443	10.9
13	Mellars, P., 1996. The Neanderthal Legacy. Princeton University Press, Princeton, N.J. ISBN: 0-691-03493-1 (cloth) <i>Journal of Evolutionary Biology</i> , 1996 , 9, 1043-1044	2.3
12	Replacement events among tetrapods: expansion or competition?. <i>The Paleontological Society Special Publications</i> , 1992 , 6, 25-25	

LIST OF PUBLICATIONS

11	Cladistics and the rate of homoplastic morphological evolution. <i>The Paleontological Society Special Publications</i> , 1992 , 6, 314-314	
10	Integrated FDDI Transceiver 1990 , 1176, 89	
9	MRC and peer review. <i>Nature</i> , 1990 , 347, 418-418	50.4
8	Mass extinctions. <i>Nature</i> , 1985 , 315, 536-536	50.4
7	A Dynamic Absorber for Gear Systems Operating in Resonance and Instability Regions. <i>Journal of Mechanical Design</i> , 1981 , 103, 364-371	
6	Fossil Record500-507	
5	Reptilia (Reptiles)604-612	
4	How to Study Fossil Vertebrates 1997 , 15-35	
3	Palaeontology: Dinosaurs, Boneheads and Recovery from Extinction. Current Biology, 2016, 26, R887-I	₹8₩3
2	Reply to: 'Reconstructed evolutionary patterns from crocodile-line archosaurs demonstrate the impact of failure to log-transform body size data' <i>Communications Biology</i> , 2022 , 5, 170	6.7
1	Decoupling of morphological disparity and taxonomic diversity during the end-Permian mass extinction [ADDENDUM. <i>Paleobiology</i> ,1-1	2.6