Xiangfeng Duan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4464839/xiangfeng-duan-publications-by-year.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

353	61,417	114	245
papers	citations	h-index	g-index
386	70,599	17.9	8.06
ext. papers	ext. citations	avg, IF	L-index

#	Paper	IF	Citations
353	A Silicon Monoxide Lithium-Ion Battery Anode with Ultrahigh Areal Capacity <i>Nano-Micro Letters</i> , 2022 , 14, 50	19.5	8
352	Multiplexed nanomaterial-assisted laser desorption/ionization for pan-cancer diagnosis and classification <i>Nature Communications</i> , 2022 , 13, 617	17.4	6
351	2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges <i>Chemical Reviews</i> , 2022 ,	68.1	28
350	Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. <i>Nature Catalysis</i> , 2022 , 5, 66-73	36.5	29
349	The promises, challenges and pathways to room-temperature sodium-sulfur batteries <i>National Science Review</i> , 2022 , 9, nwab050	10.8	13
348	Van der Waals superlattices <i>National Science Review</i> , 2022 , 9, nwab166	10.8	4
347	Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes <i>Science</i> , 2022 , 375, 852-859	33.3	21
346	Importance of Multiple Excitation Wavelengths for TERS Characterization of TMDCs and Their Vertical Heterostructures. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 5218-5223	3.8	2
345	Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. <i>Nature Catalysis</i> , 2021 , 4, 1050-1058	36.5	46
344	Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. <i>Nature</i> , 2021 , 599, 404-410	50.4	7
343	Autobifunctional Mechanism of Jagged Pt Nanowires for Hydrogen Evolution Kinetics via End-to-End Simulation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5355-5363	16.4	7
342	Van der Waals epitaxial growth of air-stable CrSe nanosheets with thickness-tunable magnetic order. <i>Nature Materials</i> , 2021 , 20, 818-825	27	68
341	High-order superlattices by rolling up van der Waals heterostructures. <i>Nature</i> , 2021 , 591, 385-390	50.4	47
340	Toward Rational Design of Single-Atom Catalysts. Journal of Physical Chemistry Letters, 2021, 12, 2837-	2 8 47	15
339	Promises and prospects of two-dimensional transistors. <i>Nature</i> , 2021 , 591, 43-53	50.4	143
338	Layered Intercalation Materials. Advanced Materials, 2021, 33, e2004557	24	37
337	Probing and pushing the limit of emerging electronic materials via van der Waals integration. <i>MRS Bulletin</i> , 2021 , 46, 534-546	3.2	1

(2020-2021)

336	In-plane epitaxial growth of 2D CoSe-WSe2 metal-semiconductor lateral heterostructures with improved WSe2 transistors performance. <i>InformalalMaterilly</i> , 2021 , 3, 222-228	23.1	11
335	Elastic ceramic aerogels for thermal superinsulation under extreme conditions. <i>Materials Today</i> , 2021 , 42, 162-177	21.8	19
334	Ultra-Steep Slope Impact Ionization Transistors Based on Graphene/InAs Heterostructures. <i>Small Structures</i> , 2021 , 2, 2000039	8.7	6
333	Van der Waals Heterostructures by Design: From 1D and 2D to 3D. <i>Matter</i> , 2021 , 4, 552-581	12.7	19
332	High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. <i>CheM</i> , 2021 , 7, 1887-1902	16.2	8
331	Organic Semiconductor Single Crystals for X-ray Imaging. <i>Advanced Materials</i> , 2021 , 33, e2104749	24	14
330	Two-dimensional van der Waals thin film transistors as active matrix for spatially resolved pressure sensing. <i>Nano Research</i> , 2021 , 14, 3395-3401	10	1
329	Silver nanoparticles boost charge-extraction efficiency in microbial fuel cells. <i>Science</i> , 2021 , 373, 1336-1	3,4,0,	38
328	Tunable one-dimensional inorganic perovskite nanomeshes library for water splitting. <i>Nano Energy</i> , 2021 , 88, 106251	17.1	5
327	Large-Area Synthesis and Patterning of All-Inorganic Lead Halide Perovskite Thin Films and Heterostructures. <i>Nano Letters</i> , 2021 , 21, 1454-1460	11.5	12
326	Hidden Vacancy Benefit in Monolayer 2D Semiconductors. <i>Advanced Materials</i> , 2021 , 33, e2007051	24	27
325	Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. <i>Nature Chemistry</i> , 2020 , 12, 764-772	17.6	207
324	Redox Control of Charge Transport in Vertical Ferrocene Molecular Tunnel Junctions. <i>CheM</i> , 2020 , 6, 1172-1182	16.2	18
323	Organosulfur Compounds Enable Uniform Lithium Plating and Long-Term Battery Cycling Stability. <i>Nano Letters</i> , 2020 , 20, 2594-2601	11.5	18
322	General synthesis of two-dimensional van der Waals heterostructure arrays. <i>Nature</i> , 2020 , 579, 368-374	50.4	195
321	Molecular Design of Single-Atom Catalysts for Oxygen Reduction Reaction. <i>Advanced Energy Materials</i> , 2020 , 10, 1903815	21.8	139
320	Efficient strain modulation of 2D materials via polymer encapsulation. <i>Nature Communications</i> , 2020 , 11, 1151	17.4	81
319	Highly Reliable Low-Voltage Memristive Switching and Artificial Synapse Enabled by van der Waals Integration. <i>Matter</i> , 2020 , 2, 965-976	12.7	22

318	Covalent Selenium Embedded in Hierarchical Carbon Nanofibers for Ultra-High Areal Capacity Li-Se Batteries. <i>IScience</i> , 2020 , 23, 100919	6.1	24
317	van der Waals Integrated Devices Based on Nanomembranes of 3D Materials. <i>Nano Letters</i> , 2020 , 20, 1410-1416	11.5	10
316	Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. <i>Nature Electronics</i> , 2020 , 3, 59-69	28.4	69
315	Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals. <i>Nature Communications</i> , 2020 , 11, 659	17.4	12
314	Pt3Ag alloy wavy nanowires as highly effective electrocatalysts for ethanol oxidation reaction. <i>Nano Research</i> , 2020 , 13, 1472-1478	10	25
313	Suppressed threshold voltage roll-off and ambipolar transport in multilayer transition metal dichalcogenide feed-back gate transistors. <i>Nano Research</i> , 2020 , 13, 1943-1947	10	4
312	Programmable devices based on reversible solid-state doping of two-dimensional semiconductors with superionic silver iodide. <i>Nature Electronics</i> , 2020 , 3, 630-637	28.4	26
311	Ultrafast growth of large single crystals of monolayer WS and WSe. <i>National Science Review</i> , 2020 , 7, 737-744	10.8	36
310	Boosting superconductivity in organic-inorganic superlattices. Science Bulletin, 2020, 65, 177-178	10.6	2
309	A Fully Aqueous Hybrid Electrolyte Rechargeable Battery with High Voltage and High Energy Density. <i>Advanced Energy Materials</i> , 2020 , 10, 2001583	21.8	21
308	Beyond Extended Surfaces: Understanding the Oxygen Reduction Reaction on Nanocatalysts. Journal of the American Chemical Society, 2020 , 142, 17812-17827	16.4	54
307	Tailoring a Three-Phase Microenvironment for High-Performance Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. <i>Matter</i> , 2020 , 3, 1774-1790	12.7	30
306	Pushing the conductance and transparency limit of monolayer graphene electrodes for flexible organic light-emitting diodes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25991-25998	11.5	10
305	Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. <i>Science</i> , 2020 , 370, 192-197	33.3	156
304	High-Performance Flexible Bismuth Telluride Thin Film from Solution Processed Colloidal Nanoplates. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000600	6.8	17
303	Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. <i>Nature Nanotechnology</i> , 2020 , 15, 768-775	28.7	23
302	Graphene-based vertical thin film transistors. Science China Information Sciences, 2020, 63, 1	3.4	14
301	Single Atoms at Crystal Ladder Steps. <i>CheM</i> , 2020 , 6, 3169-3171	16.2	

(2019-2020)

300	Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. <i>Nano Research</i> , 2020 , 13, 3310-3314	10	8
299	Manipulation of Valley Pseudospin by Selective Spin Injection in Chiral Two-Dimensional Perovskite/Monolayer Transition Metal Dichalcogenide Heterostructures. <i>ACS Nano</i> , 2020 , 14, 15154-1	5160	13
298	A fundamental look at electrocatalytic sulfur reduction reaction. <i>Nature Catalysis</i> , 2020 , 3, 762-770	36.5	206
297	Robust Flexible Pressure Sensors Made from Conductive Micropyramids for Manipulation Tasks. <i>ACS Nano</i> , 2020 , 14, 12866-12876	16.7	38
296	Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. <i>Nature Catalysis</i> , 2020 , 3, 804-812	36.5	118
295	Hierarchical N-doping germanium/carbon nanofibers as anode for high-performance lithium-ion and sodium-ion batteries. <i>Nanotechnology</i> , 2020 , 31, 015402	3.4	14
294	Doping-free complementary WSe circuit via van der Waals metal integration. <i>Nature Communications</i> , 2020 , 11, 1866	17.4	68
293	In situ interface engineering for probing the limit of quantum dot photovoltaic devices. <i>Nature Nanotechnology</i> , 2019 , 14, 950-956	28.7	23
292	Ultra-high Areal Capacity Realized in Three-Dimensional Holey Graphene/SnO Composite Anodes. <i>IScience</i> , 2019 , 19, 728-736	6.1	25
291	In Situ Probing Molecular Intercalation in Two-Dimensional Layered Semiconductors. <i>Nano Letters</i> , 2019 , 19, 6819-6826	11.5	37
290	Microwave Shock Synthesis beyond Thermodynamic Equilibrium. <i>Matter</i> , 2019 , 1, 555-557	12.7	3
289	Van der Waals thin-film electronics. <i>Nature Electronics</i> , 2019 , 2, 378-388	28.4	67
288	Selective growth of wide band gap atomically thin Sb2O3 inorganic molecular crystal on WS2. <i>Nano Research</i> , 2019 , 12, 2781-2787	10	8
287	van der Waals Epitaxial Growth of Atomically Thin 2D Metals on Dangling-Bond-Free WSe2 and WS2. <i>Advanced Functional Materials</i> , 2019 , 29, 1806611	15.6	60
286	A field-effect approach to directly profiling the localized states in monolayer MoS2. <i>Science Bulletin</i> , 2019 , 64, 1049-1055	10.6	5
285	In Situ Transmission Electron Microscopy for Energy Materials and Devices. <i>Advanced Materials</i> , 2019 , 31, e1900608	24	53
284	Bacteria-Derived Biological Carbon Building Robust Li-S Batteries. <i>Nano Letters</i> , 2019 , 19, 4384-4390	11.5	57
283	Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. <i>Science</i> , 2019 , 364, 1057-1062	33.3	291

282	Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. <i>Nature Catalysis</i> , 2019 , 2, 495-503	36.5	258
281	Rational Kinetics Control toward Universal Growth of 2D Vertically Stacked Heterostructures. <i>Advanced Materials</i> , 2019 , 31, e1901351	24	53
280	Nanoscale electronic devices based on transition metal dichalcogenides. 2D Materials, 2019, 6, 032004	5.9	31
279	A scalable slurry process to fabricate a 3D lithiophilic and conductive framework for a high performance lithium metal anode. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13225-13233	13	31
278	Phase-Tunable Synthesis of Ultrathin Layered Tetragonal CoSe and Nonlayered Hexagonal CoSe Nanoplates. <i>Advanced Materials</i> , 2019 , 31, e1900901	24	37
277	Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation. <i>Nano Research</i> , 2019 , 12, 1467-1472	10	15
276	Van der Waals integration before and beyond two-dimensional materials. <i>Nature</i> , 2019 , 567, 323-333	50.4	530
275	Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. <i>Nano Research</i> , 2019 , 12, 1139-1145	10	28
274	Self-Assembled Molecular-Electronic Films Controlled by Room Temperature Quantum Interference. <i>CheM</i> , 2019 , 5, 474-484	16.2	28
273	Hierarchical Porous Carbon Derived from Covalent Triazine Frameworks for High Mass Loading Supercapacitors 2019 , 1, 320-326		19
272	PtCuNi Tetrahedra Catalysts with Tailored Surfaces for Efficient Alcohol Oxidation. <i>Nano Letters</i> , 2019 , 19, 5431-5436	11.5	56
271	Nanowire Electronics: From Nanoscale to Macroscale. <i>Chemical Reviews</i> , 2019 , 119, 9074-9135	68.1	105
270	Rapid Electrochemical Cleaning Silver Nanowire Thin Films for High-Performance Transparent Conductors. <i>Journal of the American Chemical Society</i> , 2019 , 141, 12251-12257	16.4	26
269	SnSe/MoS van der Waals Heterostructure Junction Field-Effect Transistors with Nearly Ideal Subthreshold Slope. <i>Advanced Materials</i> , 2019 , 31, e1902962	24	29
268	Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts. <i>Matter</i> , 2019 , 1, 1567-1580	12.7	53
267	Nitrogen Doped Graphdiyne Enhances Oxygen Reduction Reactions. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2019 , 35, 559-560	3.8	2
266	The Blossoming of 2D Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019 , 35, 1039-1040	3.8	3
265	Quantitative Surface Plasmon Interferometry via Upconversion Photoluminescence Mapping. <i>Research</i> , 2019 , 2019, 8304824	7.8	2

(2018-2019)

264	Villiform carbon fiber paper as current collector for capacitive deionization devices with high areal electrosorption capacity. <i>Desalination</i> , 2019 , 459, 1-9	10.3	11
263	Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. <i>Nature Communications</i> , 2019 , 10, 806	17.4	139
262	Double-negative-index ceramic aerogels for thermal superinsulation. <i>Science</i> , 2019 , 363, 723-727	33.3	229
261	Single atom electrocatalysts supported on graphene or graphene-like carbons. <i>Chemical Society Reviews</i> , 2019 , 48, 5207-5241	58.5	238
260	Uniform and ultrathin high-lgate dielectrics for two-dimensional electronic devices. <i>Nature Electronics</i> , 2019 , 2, 563-571	28.4	93
259	Direct Observation of Nanoscale Light Confinement without Metal. <i>Advanced Materials</i> , 2019 , 31, e1806	6 <u>34</u> 1	12
258	Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts. <i>Advanced Materials</i> , 2019 , 31, e1802234	24	286
257	Hierarchical 3D electrodes for electrochemical energy storage. <i>Nature Reviews Materials</i> , 2019 , 4, 45-60	73.3	360
256	Long-Range Hierarchical Nanocrystal Assembly Driven by Molecular Structural Transformation. Journal of the American Chemical Society, 2019 , 141, 1498-1505	16.4	14
255	Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. <i>Joule</i> , 2019 , 3, 303	27.8	10
254	Maximizing the Current Output in Self-Aligned Graphene-InAs-Metal Vertical Transistors. <i>ACS Nano</i> , 2019 , 13, 847-854	16.7	14
253	A Highly Active Star Decahedron Cu Nanocatalyst for Hydrocarbon Production at Low Overpotentials. <i>Advanced Materials</i> , 2019 , 31, e1805405	24	72
252	High-Performance Black Phosphorus Field-Effect Transistors with Long-Term Air Stability. <i>Nano Letters</i> , 2019 , 19, 331-337	11.5	46
251	Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA. <i>Nano Research</i> , 2019 , 12, 211-215	10	50
250	Monolayer atomic crystal molecular superlattices. <i>Nature</i> , 2018 , 555, 231-236	50.4	220
249	A molecular cross-linking approach for hybrid metal oxides. <i>Nature Materials</i> , 2018 , 17, 341-348	27	66
248	On-Chip in Situ Monitoring of Competitive Interfacial Anionic Chemisorption as a Descriptor for Oxygen Reduction Kinetics. <i>ACS Central Science</i> , 2018 , 4, 590-599	16.8	19
247	Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals. <i>ACS Nano</i> , 2018 , 12, 4853-4860	16.7	64

246 Few-Layer GeAs Field-Effect Transistors and Infrared Photodetectors. Advanced Materials, 2018, 30, e1705934 69

245	WSe2/GeSe heterojunction photodiode with giant gate tunability. <i>Nano Energy</i> , 2018 , 49, 103-108	17.1	49
 7	The second special second seco	-1/11	77
244	Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles. <i>Nano Letters</i> , 2018 , 18, 798-804	11.5	115
243	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. <i>Nature Catalysis</i> , 2018 , 1, 63-72	36.5	968
242	Metal@semiconductor core-shell nanocrystals with atomically organized interfaces for efficient hot electron-mediated photocatalysis. <i>Nano Energy</i> , 2018 , 48, 44-52	17.1	75
241	Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. <i>Chemical Society Reviews</i> , 2018 , 47, 3129-3151	58.5	99
240	Synthesis of Ultrathin Metallic MTe (M = V, Nb, Ta) Single-Crystalline Nanoplates. <i>Advanced Materials</i> , 2018 , 30, e1801043	24	111
239	Two-dimensional transistors beyond graphene and TMDCs. Chemical Society Reviews, 2018, 47, 6388-64	1098.5	193
238	Improvement by Channel Recess of Contact Resistance and Gate Control in Large-Scale Spin-Coated MoS2 MOSFETs. <i>IEEE Electron Device Letters</i> , 2018 , 39, 1453-1456	4.4	4
237	Microwave-Assisted Rapid Synthesis of Graphene-Supported Single Atomic Metals. <i>Advanced Materials</i> , 2018 , 30, e1802146	24	172
236	Synthesis of ultrathin two-dimensional nanosheets and van der Waals heterostructures from non-layered Ecul. <i>Npj 2D Materials and Applications</i> , 2018 , 2,	8.8	21
235	Gate-tunable frequency combs in graphene-nitride microresonators. <i>Nature</i> , 2018 , 558, 410-414	50.4	101
234	Direct Room Temperature Welding and Chemical Protection of Silver Nanowire Thin Films for High Performance Transparent Conductors. <i>Journal of the American Chemical Society</i> , 2018 , 140, 193-199	16.4	103
233	Broadband gate-tunable terahertz plasmons in graphene heterostructures. <i>Nature Photonics</i> , 2018 , 12, 22-28	33.9	83
232	Highly-anisotropic optical and electrical properties in layered SnSe. <i>Nano Research</i> , 2018 , 11, 554-564	10	77
231	Building two-dimensional materials one row at a time: Avoiding the nucleation barrier. <i>Science</i> , 2018 , 362, 1135-1139	33.3	105
230	Chemical Vapor Deposition Growth of Single Crystalline CoTe2 Nanosheets with Tunable Thickness and Electronic Properties. <i>Chemistry of Materials</i> , 2018 , 30, 8891-8896	9.6	30
229	Solution-processable 2D semiconductors for high-performance large-area electronics. <i>Nature</i> , 2018 , 562, 254-258	50.4	404

228	Inhibiting Polysulfide Shuttling with a Graphene Composite Separator for Highly Robust Lithium-Sulfur Batteries. <i>Joule</i> , 2018 , 2, 2091-2104	27.8	226
227	Quantum interference mediated vertical molecular tunneling transistors. Science Advances, 2018, 4, each	at8237	43
226	Synthetic Control of Two-Dimensional NiTe Single Crystals with Highly Uniform Thickness Distributions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14217-14223	16.4	74
225	Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. <i>Npj 2D Materials and Applications</i> , 2018 , 2,	8.8	26
224	Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. <i>Chemical Society Reviews</i> , 2018 , 47, 7504-7521	58.5	72
223	Pt-Ni alloy catalysts for highly selective anti-Markovnikov alkene hydrosilylation. <i>Science China Materials</i> , 2018 , 61, 1339-1344	7.1	10
222	Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe Single Crystals and Their Thickness-Dependent Electronic Properties. <i>Nano Letters</i> , 2018 , 18, 3523-3529	11.5	103
221	Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. <i>Nature</i> , 2018 , 557, 696-700	50.4	766
220	Strong Fluorescence Enhancement with Silica-Coated Au Nanoshell Dimers. <i>Plasmonics</i> , 2017 , 12, 263-2	629.4	5
219	Three-dimensional graphene/polyimide composite-derived flexible high-performance organic cathode for rechargeable lithium and sodium batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2710-	2796	89
218	Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol. <i>Science Advances</i> , 2017 , 3, e1600615	14.3	18
217	Designing an Efficient Multimode Environmental Sensor Based on GrapheneBilicon Heterojunction. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600262	6.8	38
216	Spatially composition-modulated two-dimensional WSSe nanosheets. <i>Nanoscale</i> , 2017 , 9, 4707-4712	7.7	32
215	Flexible Dielectric Nanocomposites with Ultrawide Zero-Temperature Coefficient Windows for Electrical Energy Storage and Conversion under Extreme Conditions. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 7591-7600	9.5	19
214	Ambipolar Barristors for Reconfigurable Logic Circuits. <i>Nano Letters</i> , 2017 , 17, 1448-1454	11.5	18
213	Photodetectors: Solvent-Based Soft-Patterning of Graphene Lateral Heterostructures for Broadband High-Speed Metal Bemiconductor Metal Photodetectors (Adv. Mater. Technol. 2/2017). Advanced Materials Technologies, 2017, 2,	6.8	2
212	Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS Nanosheets. <i>ACS Nano</i> , 2017 , 11, 4892-4898	16.7	79
211	A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	144

210	Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. <i>Science</i> , 2017 , 356, 599-604	33.3	965
209	Self-Optimization of the Active Site of Molybdenum Disulfide by an Irreversible Phase Transition during Photocatalytic Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7610-7	6 1 4·4	175
208	Self-Optimization of the Active Site of Molybdenum Disulfide by an Irreversible Phase Transition during Photocatalytic Hydrogen Evolution. <i>Angewandte Chemie</i> , 2017 , 129, 7718-7722	3.6	46
207	Nonlinear photoluminescence in monolayer WS: parabolic emission and excitation fluence-dependent recombination dynamics. <i>Nanoscale</i> , 2017 , 9, 7235-7241	7.7	30
206	Ultrafine Graphene Nanomesh with Large On/Off Ratio for High-Performance Flexible Biosensors. <i>Advanced Functional Materials</i> , 2017 , 27, 1604096	15.6	78
205	Photodetectors: A Broadband Fluorographene Photodetector (Adv. Mater. 22/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
204	A Broadband Fluorographene Photodetector. <i>Advanced Materials</i> , 2017 , 29, 1700463	24	72
203	A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film. <i>Advanced Materials</i> , 2017 , 29, 1606662	24	67
202	Growth of Single-Crystalline Cadmium Iodide Nanoplates, CdI/MoS (WS, WSe) van der Waals Heterostructures, and Patterned Arrays. <i>ACS Nano</i> , 2017 , 11, 3413-3419	16.7	45
201	Solvent-Based Soft-Patterning of Graphene Lateral Heterostructures for Broadband High-Speed MetalBemiconductorMetal Photodetectors. <i>Advanced Materials Technologies</i> , 2017 , 2, 1600241	6.8	43
200	Light welding nanoparticles: from metal colloids to free-standing conductive metallic nanoparticle film. <i>Science China Materials</i> , 2017 , 60, 39-48	7.1	11
199	Vapor growth and interfacial carrier dynamics of high-quality CdS-CdSSe-CdS axial nanowire heterostructures. <i>Nano Energy</i> , 2017 , 32, 28-35	17.1	53
198	Gate-Induced Insulator to Band-Like Transport Transition in Organolead Halide Perovskite. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 429-434	6.4	20
197	Composition-Modulated Two-Dimensional Semiconductor Lateral Heterostructures via Layer-Selected Atomic Substitution. <i>ACS Nano</i> , 2017 , 11, 961-967	16.7	86
196	Nanoplates: Synthesis of 2D Layered Bil3 Nanoplates, Bil3/WSe2van der Waals Heterostructures and Their Electronic, Optoelectronic Properties (Small 38/2017). <i>Small</i> , 2017 , 13,	11	2
195	Vertical Charge Transport and Negative Transconductance in Multilayer Molybdenum Disulfides. <i>Nano Letters</i> , 2017 , 17, 5495-5501	11.5	35
194	Synthesis of 2D Layered Bil Nanoplates, Bil /WSe van der Waals Heterostructures and Their Electronic, Optoelectronic Properties. <i>Small</i> , 2017 , 13, 1701034	11	41
193	Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. <i>Science</i> , 2017 , 357, 788-792	33.3	388

(2016-2017)

192	Van der Waals epitaxial growth and optoelectronics of large-scale WSe/SnS vertical bilayer p-n junctions. <i>Nature Communications</i> , 2017 , 8, 1906	17.4	258
191	General Strategy for Two-Dimensional Transition Metal Dichalcogenides by Ion Exchange. <i>Chemistry of Materials</i> , 2017 , 29, 10019-10026	9.6	14
190	Layer-by-Layer Degradation of Methylammonium Lead Tri-iodide Perovskite Microplates. <i>Joule</i> , 2017 , 1, 548-562	27.8	142
189	Confined Pyrolysis within Metal-Organic Frameworks To Form Uniform Ru Clusters for Efficient Oxidation of Alcohols. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9795-9798	16.4	157
188	Hot graphene sponge cleans viscous crude-oil spill. Science China Materials, 2017, 60, 681-682	7.1	3
187	Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. <i>Nano Research</i> , 2017 , 10, 1223-1233	10	75
186	Highly Sensitive Chemical Detection with Tunable Sensitivity and Selectivity from Ultrathin Platinum Nanowires. <i>Small</i> , 2017 , 13, 1602969	11	14
185	The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Field-Effect Transistors. <i>Advanced Materials</i> , 2017 , 29, 1601959	24	81
184	Three-dimensional graphene membrane cathode for high energy density rechargeable lithium-air batteries in ambient conditions. <i>Nano Research</i> , 2017 , 10, 472-482	10	23
183	Graphene Q-switched distributed feedback fiber lasers with narrow linewidth approaching the transform limit. <i>Optics Express</i> , 2017 , 25, 8202-8211	3.3	20
182	Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors. <i>Nano Letters</i> , 2016 , 16, 6337-6342	11.5	91
181	Composition tunable ternary Pt-Ni-Co octahedra for optimized oxygen reduction activity. <i>Chemical Communications</i> , 2016 , 52, 11215-11218	5.8	33
180	Tuning the Catalytic Activity of a Metal-Organic Framework Derived Copper and Nitrogen Co-Doped Carbon Composite for Oxygen Reduction Reaction. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 26769-26774	9.5	55
179	Three-dimensional macro-structures of two-dimensional nanomaterials. <i>Chemical Society Reviews</i> , 2016 , 45, 5541-5588	58.5	231
178	Functional Three-Dimensional Graphene/Polymer Composites. ACS Nano, 2016, 10, 7231-47	16.7	245
177	Mechanically Shaped Two-Dimensional Covalent Organic Frameworks Reveal Crystallographic Alignment and Fast Li-Ion Conductivity. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9767-70	16.4	177
176	Van der Waals heterostructures and devices. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	1262
175	A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. <i>Nature Communications</i> , 2016 , 7, 13432	17.4	54

174	Wang etlal. Reply. <i>Physical Review Letters</i> , 2016 , 117, 219702	7.4	1
173	Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. <i>Science</i> , 2016 , 354, 1414-1419	33.3	986
172	Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers. <i>Nature Communications</i> , 2016 , 7, 13278	17.4	96
171	Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. <i>Science Advances</i> , 2016 , 2, e1600993	14.3	39
170	Nanoelectronic Investigation Reveals the Electrochemical Basis of Electrical Conductivity in Shewanella and Geobacter. <i>ACS Nano</i> , 2016 , 10, 9919-9926	16.7	34
169	Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. <i>Nature Communications</i> , 2016 , 7, 11330	17.4	173
168	High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures. <i>Advanced Materials</i> , 2016 , 28, 4120-5	24	35
167	Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites. ACS Nano, 2016, 10, 6933-41	16.7	91
166	In situ development of highly concave and composition-confined PtNi octahedra with high oxygen reduction reaction activity and durability. <i>Nano Research</i> , 2016 , 9, 149-157	10	52
165	Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors. <i>Angewandte Chemie</i> , 2016 , 128, 593-597	3.6	1
164	Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 583-7	16.4	19
163	Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium ulfur battery. <i>Nano Research</i> , 2016 , 9, 240-248	10	147
162	van der Waals Heterojunction Devices Based on Organohalide Perovskites and Two-Dimensional Materials. <i>Nano Letters</i> , 2016 , 16, 367-73	11.5	163
161	Synthesis of WS2xSe2-2x Alloy Nanosheets with Composition-Tunable Electronic Properties. <i>Nano Letters</i> , 2016 , 16, 264-9	11.5	218
160	Transparent megahertz circuits from solution-processed composite thin films. <i>Nanoscale</i> , 2016 , 8, 7978-	· 8 3 ₇	2
159	Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe/IMoSivan der Waals Heterostructures. <i>ACS Nano</i> , 2016 , 10, 3852-8	16.7	314
158	Omnidirectional enhancement of photocatalytic hydrogen evolution over hierarchical flauline leaf nanoarchitectures. <i>Applied Catalysis B: Environmental</i> , 2016 , 186, 88-96	21.8	104
157	Vertically Stacked Heterostructures for Tunable Photonic Devices - from 2D Materials to Hybrid Perovskites 2016 ,		1

(2015-2016)

156	Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination. <i>Nano Research</i> , 2016 , 9, 2458-2466	10	81
155	Contacts between Two- and Three-Dimensional Materials: Ohmic, Schottky, and p-n Heterojunctions. <i>ACS Nano</i> , 2016 , 10, 4895-919	16.7	257
154	Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 5345-50	16.4	111
153	Metal-organic framework templated synthesis of ultrathin, well-aligned metallic nanowires. <i>ACS Nano</i> , 2015 , 9, 3044-9	16.7	54
152	Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability. <i>Nano Research</i> , 2015 , 8, 2850-2858	10	29
151	High Gain Submicrometer Optical Amplifier at Near-Infrared Communication Band. <i>Physical Review Letters</i> , 2015 , 115, 027403	7.4	38
150	High Surface Area Tunnels in Hexagonal WOII <i>Nano Letters</i> , 2015 , 15, 4834-8	11.5	118
149	Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide. <i>Nature Communications</i> , 2015 , 6, 7509	17.4	104
148	Lateral Growth of Composition Graded Atomic Layer MoS(2(1-x))Se(2x) Nanosheets. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5284-7	16.4	155
147	Toward barrier free contact to molybdenum disulfide using graphene electrodes. <i>Nano Letters</i> , 2015 , 15, 3030-4	11.5	286
146	Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. <i>Chemical Communications</i> , 2015 , 51, 7470-3	5.8	207
145	Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 5435-5440	3.6	34
144	Cosolvent approach for solution-processable electronic thin films. ACS Nano, 2015, 9, 4398-405	16.7	51
143	Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. <i>Chemical Society Reviews</i> , 2015 , 44, 8859-76	58.5	719
142	High-Performance Organic Vertical Thin Film Transistor Using Graphene as a Tunable Contact. <i>ACS Nano</i> , 2015 , 9, 11102-8	16.7	58
141	Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. <i>Science Advances</i> , 2015 , 1, e1500613	14.3	226
140	An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. <i>Nature Communications</i> , 2015 , 6, 7867	17.4	44
139	Graphene-Assisted Solution Growth of Vertically Oriented Organic Semiconducting Single Crystals. <i>ACS Nano</i> , 2015 , 9, 9486-96	16.7	37

138	Large area growth and electrical properties of p-type WSe2 atomic layers. <i>Nano Letters</i> , 2015 , 15, 709-	1 3 _{11.5}	287
137	51.4: Invited Paper: High Performance Flexible TFTs from Oxide/Carbon Heterostructures. <i>Digest of Technical Papers SID International Symposium</i> , 2015 , 46, 775-777	0.5	
136	Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. <i>Accounts of Chemical Research</i> , 2015 , 48, 1666-75	24.3	388
135	Significantly Enhanced Visible Light Photoelectrochemical Activity in TiOlNanowire Arrays by Nitrogen Implantation. <i>Nano Letters</i> , 2015 , 15, 4692-8	11.5	138
134	Solution Processable Holey Graphene Oxide and Its Derived Macrostructures for High-Performance Supercapacitors. <i>Nano Letters</i> , 2015 , 15, 4605-10	11.5	349
133	ELECTROCHEMISTRY. High-performance transition metal-doped PtNi octahedra for oxygen reduction reaction. <i>Science</i> , 2015 , 348, 1230-4	33.3	1307
132	Synthesis of Stable Shape-Controlled Catalytically Active Palladium Hydride. <i>Journal of the American Chemical Society</i> , 2015 , 137, 15672-5	16.4	75
131	Highly sensitive detection of mercury(II) ions with few-layer molybdenum disulfide. <i>Nano Research</i> , 2015 , 8, 257-262	10	65
130	Integration of molecular and enzymatic catalysts on graphene for biomimetic generation of antithrombotic species. <i>Nature Communications</i> , 2014 , 5, 3200	17.4	83
129	Chemical vapor deposition growth of monolayer MoSe2 nanosheets. <i>Nano Research</i> , 2014 , 7, 511-517	10	285
128	Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy. <i>Carbon</i> , 2014 , 66, 713-719	10.4	106
127	Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. <i>Nano Letters</i> , 2014 , 14, 6547-53	11.5	60
126	A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. <i>Energy and Environmental Science</i> , 2014 , 7, 2957-2962	35.4	147
125	High density catalytic hot spots in ultrafine wavy nanowires. <i>Nano Letters</i> , 2014 , 14, 3887-94	11.5	93
124	Highly flexible electronics from scalable vertical thin film transistors. <i>Nano Letters</i> , 2014 , 14, 1413-8	11.5	113
123	Holey graphene frameworks for highly efficient capacitive energy storage. <i>Nature Communications</i> , 2014 , 5, 4554	17.4	1002
122	Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. <i>Nature Nanotechnology</i> , 2014 , 9, 1024-30	28.7	858
121	Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. <i>Nano Letters</i> , 2014 , 14, 5590-7	11.5	782

(2013-2014)

120	Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. <i>Nature Communications</i> , 2014 , 5, 5143	17.4	329
119	A rational biomimetic approach to structure defect generation in colloidal nanocrystals. <i>ACS Nano</i> , 2014 , 8, 6934-44	16.7	41
118	Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. <i>Journal of the American Chemical Society</i> , 2014 , 136, 3756-9	16.4	362
117	Metal Elemiconductor transition in atomically thin Bi2Sr2Co2O8 nanosheets. APL Materials, 2014, 2, 092	59 <i>7</i> 7	6
116	Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers. <i>ACS Nano</i> , 2014 , 8, 12836-42	16.7	129
115	Band-selective infrared photodetectors with complete-composition-range InAs(x)P(1-x) alloy nanowires. <i>Advanced Materials</i> , 2014 , 26, 7444-9	24	64
114	A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction. <i>Nature Communications</i> , 2013 , 4, 2213	17.4	204
113	Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. <i>Nature Communications</i> , 2013 , 4, 2225	17.4	96
112	Functionalized graphene hydrogel-based high-performance supercapacitors. <i>Advanced Materials</i> , 2013 , 25, 5779-84	24	520
111	. Proceedings of the IEEE, 2013 , 101, 1670-1688	14.3	25
111	. Proceedings of the IEEE, 2013, 101, 1670-1688 Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. Scientific Reports, 2013, 3,	14.3 4.9	25 40
	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in		40
110	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. <i>Scientific Reports</i> , 2013 , 3, High performance thin film electronics based on inorganic nanostructures and composites. <i>Nano</i>	4.9	40
110	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. <i>Scientific Reports</i> , 2013 , 3, High performance thin film electronics based on inorganic nanostructures and composites. <i>Nano Today</i> , 2013 , 8, 514-530 Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered	4.9	40
110	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. <i>Scientific Reports</i> , 2013 , 3, High performance thin film electronics based on inorganic nanostructures and composites. <i>Nano Today</i> , 2013 , 8, 514-530 Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. <i>Nature Nanotechnology</i> , 2013 , 8, 952-8	4·9 17·9 28·7	40 28 866
110 109 108	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. <i>Scientific Reports</i> , 2013 , 3, High performance thin film electronics based on inorganic nanostructures and composites. <i>Nano Today</i> , 2013 , 8, 514-530 Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. <i>Nature Nanotechnology</i> , 2013 , 8, 952-8 Very high energy density silicideBir primary batteries. <i>Energy and Environmental Science</i> , 2013 , 6, 2621 Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability. <i>Angewandte Chemie - International Edition</i> , 2013 ,	4·9 17·9 28·7	40 28 866
110 109 108 107	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. <i>Scientific Reports</i> , 2013 , 3, High performance thin film electronics based on inorganic nanostructures and composites. <i>Nano Today</i> , 2013 , 8, 514-530 Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. <i>Nature Nanotechnology</i> , 2013 , 8, 952-8 Very high energy density silicideBir primary batteries. <i>Energy and Environmental Science</i> , 2013 , 6, 2621 Biomimetic synthesis of an ultrathin platinum nanowire network with a high twin density for enhanced electrocatalytic activity and durability. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 12577-81 Monodisperse Cu@PtCu nanocrystals and their conversion into hollow-PtCu nanostructures for	4·9 17·9 28·7 35·4	40 28 866 17

102	Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. <i>Nature Materials</i> , 2013 , 12, 246-52	27	705
101	Tunable transport gap in narrow bilayer graphene nanoribbons. <i>Scientific Reports</i> , 2013 , 3, 1248	4.9	41
100	One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. <i>Nano Research</i> , 2013 , 6, 65-76	10	182
99	Palladium-based nanostructures with highly porous features and perpendicular pore channels as enhanced organic catalysts. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 2520-4	16.4	135
98	High performance amorphous ZnMgO/carbon nanotube composite thin-film transistors with a tunable threshold voltage. <i>Nanoscale</i> , 2013 , 5, 2830-4	7.7	8
97	A low-temperature method to produce highly reduced graphene oxide. <i>Nature Communications</i> , 2013 , 4, 1539	17.4	371
96	Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. <i>Nature Materials</i> , 2013 , 12, 403-9	27	273
95	Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. <i>ACS Nano</i> , 2013 , 7, 4042-9	16.7	945
94	Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6063-7	16.4	135
93	Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. <i>Nature Communications</i> , 2013 , 4, 2096	17.4	422
92	Kinetic manipulation of silicide phase formation in Si nanowire templates. <i>Nano Letters</i> , 2013 , 13, 3703	-811.5	29
91	A facile strategy to Pt3Ni nanocrystals with highly porous features as an enhanced oxygen reduction reaction catalyst. <i>Advanced Materials</i> , 2013 , 25, 2974-9	24	211
90	A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. <i>Nanoscale</i> , 2013 , 5, 6284-90	7.7	32
89			
	Graphene Hydrogels: Functionalized Graphene Hydrogel-Based High-Performance Supercapacitors (Adv. Mater. 40/2013). <i>Advanced Materials</i> , 2013 , 25, 5828-5828	24	2
88		3.6	43
	(Adv. Mater. 40/2013). <i>Advanced Materials</i> , 2013 , 25, 5828-5828 Plasmonic and Catalytic AuPd Nanowheels for the Efficient Conversion of Light into Chemical		
88	(Adv. Mater. 40/2013). Advanced Materials, 2013, 25, 5828-5828 Plasmonic and Catalytic AuPd Nanowheels for the Efficient Conversion of Light into Chemical Energy. Angewandte Chemie, 2013, 125, 6179-6183 A guide for nanowire growth. Proceedings of the National Academy of Sciences of the United States	3.6	43

84	High-capacity silicon-air battery in alkaline solution. <i>ChemSusChem</i> , 2012 , 5, 177-80	8.3	35
83	Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. Journal of the American Chemical Society, 2012 , 134, 12394-7	16.4	96
82	Rational design of amorphous indium zinc oxide/carbon nanotube hybrid film for unique performance transistors. <i>Nano Letters</i> , 2012 , 12, 3596-601	11.5	78
81	Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires. <i>Nano Letters</i> , 2012 , 12, 5003-7	11.5	76
80	High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. <i>ACS Nano</i> , 2012 , 6, 8241-9	16.7	215
79	Graphene: an emerging electronic material. <i>Advanced Materials</i> , 2012 , 24, 5782-825	24	603
78	Graphene: An Emerging Electronic Material (Adv. Mater. 43/2012). Advanced Materials, 2012, 24, 5776-5	72746	25
77	Domain wall motion in synthetic Co2Si nanowires. <i>Nano Letters</i> , 2012 , 12, 1972-6	11.5	12
76	Large-scale integration of semiconductor nanowires for high-performance flexible electronics. <i>ACS Nano</i> , 2012 , 6, 1888-900	16.7	182
75	Graphene for radio frequency electronics. <i>Materials Today</i> , 2012 , 15, 328-338	21.8	88
74	A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1498-1503		66
73	Towards highly efficient photocatalysts using semiconductor nanoarchitectures. <i>Energy and Environmental Science</i> , 2012 , 5, 6732	35.4	335
72	New Porous Crystals of Extended Metal-Catecholates. <i>Chemistry of Materials</i> , 2012 , 24, 3511-3513	9.6	423
71	One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16171		47
7°	Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst. <i>Angewandte Chemie</i> , 2012 , 124, 3888-3891	3.6	71
69	InnenrEktitelbild: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew. Chem. 16/2012). <i>Angewandte Chemie</i> , 2012 , 124, 4045-4045	3.6	
68	Graphene-supported hemin as a highly active biomimetic oxidation catalyst. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3822-5	16.4	275
67	Inside Back Cover: Graphene-Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst (Angew. Chem. Int. Ed. 16/2012). <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3975-3975	16.4	

66	Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. <i>Chemistry - A European Journal</i> , 2012 , 18, 10595-601	4.8	172
65	Simplifying the creation of dumbbell-like Cu-Ag nanostructures and their enhanced catalytic activity. <i>Chemistry - A European Journal</i> , 2012 , 18, 9505-10	4.8	49
64	Scalable fabrication of self-aligned graphene transistors and circuits on glass. <i>Nano Letters</i> , 2012 , 12, 2653-7	11.5	67
63	High-frequency self-aligned graphene transistors with transferred gate stacks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 11588-92	11.5	267
62	Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. <i>Nano Letters</i> , 2012 , 12, 4265-70	11.5	207
61	Asymmetric light propagation in composition-graded semiconductor nanowires. <i>Scientific Reports</i> , 2012 , 2, 820	4.9	54
60	Unveiling the formation pathway of single crystalline porous silicon nanowires. <i>ACS Applied Materials & ACS Applied & ACS Applied</i>	9.5	142
59	Composition tuning the upconversion emission in NaYF4:Yb/Tm hexaplate nanocrystals. <i>Nanoscale</i> , 2011 , 3, 963-6	7.7	69
58	Highly spectral dependent enhancement of upconversion emission with sputtered gold island films. <i>Chemical Communications</i> , 2011 , 47, 979-81	5.8	90
57	Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping. <i>Nano Letters</i> , 2011 , 11, 4759-63	11.5	127
56	Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16730-3	16.4	114
55	pH-Operated mechanized porous silicon nanoparticles. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8798-801	16.4	135
54	Covalent Organic Frameworks with High Charge Carrier Mobility. <i>Chemistry of Materials</i> , 2011 , 23, 4094	- 4 097	524
53	Porous silicon nanowires. <i>Nanoscale</i> , 2011 , 3, 4060-8	7.7	117
52	Plasmon resonance enhanced multicolour photodetection by graphene. <i>Nature Communications</i> , 2011 , 2, 579	17.4	546
51	Synthesis and electric properties of dicobalt silicide nanobelts. <i>Chemical Communications</i> , 2011 , 47, 125	5 ₅ 78	14
50	Edge effect on resistance scaling rules in graphene nanostructures. <i>Nano Letters</i> , 2011 , 11, 1082-6	11.5	34
49	Top-gated chemical vapor deposition grown graphene transistors with current saturation. <i>Nano Letters</i> , 2011 , 11, 2555-9	11.5	79

(2010-2011)

48	Linewidth roughness in nanowire-mask-based graphene nanoribbons. <i>Applied Physics Letters</i> , 2011 , 98, 243118	3.4	13
47	High-speed graphene transistors with a self-aligned nanowire gate. <i>Nature</i> , 2010 , 467, 305-8	50.4	1031
46	High-yield self-limiting single-nanowire assembly with dielectrophoresis. <i>Nature Nanotechnology</i> , 2010 , 5, 525-30	28.7	312
45	Very large magnetoresistance in graphene nanoribbons. <i>Nature Nanotechnology</i> , 2010 , 5, 655-9	28.7	237
44	Graphene nanomesh. <i>Nature Nanotechnology</i> , 2010 , 5, 190-4	28.7	1155
43	Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. <i>Nano Letters</i> , 2010 , 10, 19 ⁻⁷	17-125	141
42	Single-layer graphene on Al2O3/Si substrate: better contrast and higher performance of graphene transistors. <i>Nanotechnology</i> , 2010 , 21, 015705	3.4	78
41	Enhanced conductance fluctuation by quantum confinement effect in graphene nanoribbons. <i>Nano Letters</i> , 2010 , 10, 4590-4	11.5	26
40	High-kappa oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 6711-5	11.5	161
39	Low-noise submicron channel graphene nanoribbons. <i>Applied Physics Letters</i> , 2010 , 97, 073107	3.4	17
38	Nanoscale morphology, dimensional control, and electrical properties of oligoanilines. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10365-73	16.4	186
37	Photocatalytic Properties of Porous Silicon Nanowires. <i>Journal of Materials Chemistry</i> , 2010 , 20, 3590-3.	594	112
36	Chemically Synthesized Semiconductor Nanowires for High-Performance Electronics and Optoelectronics 2010 , 27-66		2
35	Sub-100 nm channel length graphene transistors. <i>Nano Letters</i> , 2010 , 10, 3952-6	11.5	145
34	Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts. <i>Nano Letters</i> , 2010 , 10, 1941-9	11.5	59
33	Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties. <i>Advanced Functional Materials</i> , 2010 , 20, 3005-3011	15.6	27
32	High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. <i>Advanced Materials</i> , 2010 , 22, 1941-5	24	120
31	Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells. <i>Angewandte Chemie</i> , 2010 , 122, 2927-2930	3.6	78

30	Plasmonic modulation of the upconversion fluorescence in NaYF4 :Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 2865-8	16.4	317
29	Graphene-Dielectric Integration for Graphene Transistors. <i>Materials Science and Engineering Reports</i> , 2010 , 70, 354-370	30.9	82
28	Graphene nanomeshes: Onset of conduction band gaps. Chemical Physics Letters, 2010, 498, 334-337	2.5	27
27	Electrically conductive and optically active porous silicon nanowires. <i>Nano Letters</i> , 2009 , 9, 4539-43	11.5	303
26	Rational fabrication of graphene nanoribbons using a nanowire etch mask. <i>Nano Letters</i> , 2009 , 9, 2083-	711.5	336
25	Nanowire Thin-Film Transistors: A New Avenue to High-Performance Macroelectronics. <i>IEEE Transactions on Electron Devices</i> , 2008 , 55, 3056-3062	2.9	20
24	Semiconductor Nanowires 2008 , 3910-3940		2
23	Semiconductor Nanowires 2008 , 3941-3953		
22	Assembled Semiconductor Nanowire Thin Films for High-Performance Flexible Macroelectronics. <i>MRS Bulletin</i> , 2007 , 32, 134-141	3.2	62
21	Nanowires for integrated multicolor nanophotonics. <i>Small</i> , 2005 , 1, 142-7	11	565
20	Single-nanowire electrically driven lasers. <i>Nature</i> , 2003 , 421, 241-5	50.4	2109
19	High-performance thin-film transistors using semiconductor nanowires and nanoribbons. <i>Nature</i> , 2003 , 425, 274-8	50.4	824
18	Nanowires as Building Blocks for Nanoscale Science and Technology 2003 , 3-68		14
17	Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires. <i>Nano Letters</i> , 2002 , 2, 487-490	11.5	300
16	Gallium Nitride Nanowire Nanodevices. <i>Nano Letters</i> , 2002 , 2, 101-104	11.5	806
16	Gallium Nitride Nanowire Nanodevices. <i>Nano Letters</i> , 2002 , 2, 101-104 Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. <i>Nature</i> , 2001 , 409, 66-9	11.5 50.4	806
	Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic		

LIST OF PUBLICATIONS

12	Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. <i>Science</i> , 2001 , 293, 1455-7	33.3	1553
11	General Synthesis of Compound Semiconductor Nanowires. <i>Advanced Materials</i> , 2000 , 12, 298-302	24	1221
10	Doping and Electrical Transport in Silicon Nanowires. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 5213-5	23.64	800
9	Synthesis and optical properties of gallium arsenide nanowires. <i>Applied Physics Letters</i> , 2000 , 76, 1116-	13,148	255
8	Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires. <i>Journal of the American Chemical Society</i> , 2000 , 122, 188-189	16.4	733
7	Nanocrystalline Silver Particles: Synthesis, Agglomeration, and Sputtering Induced by Electron Beam. <i>Journal of Colloid and Interface Science</i> , 1999 , 209, 347-349	9.3	79
6	Self-Regulation Synthesis of Nanocrystalline ZnGa2O4 by Hydrothermal Reaction. <i>Chemistry of Materials</i> , 1998 , 10, 17-18	9.6	59
5	Giant magnetoresistance in bulk La0.6Mg0.4MnO3. <i>Journal of Materials Research</i> , 1997 , 12, 2648-2650	2.5	3
4	Solvothermal Co-reduction Route to the Nanocrystalline IIIIV Semiconductor InAs. <i>Journal of the American Chemical Society</i> , 1997 , 119, 7869-7870	16.4	72
3	Graphene Electronics159-179		
2	Noble Metal Based Electrocatalysts for Alcohol Oxidation Reactions in Alkaline Media. <i>Advanced Functional Materials</i> ,2106401	15.6	6
1	1D PtCo nanowires as catalysts for PEMFCs with low Pt loading. Science China Materials,1	7.1	O