
Manda Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/446462/publications.pdf Version: 2024-02-01

Μανίσα Υμ

#	Article	IF	CITATIONS
1	S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature, 2011, 478, 264-268.	27.8	596
2	Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytologist, 2014, 202, 1142-1156.	7.3	415
3	<i>Agrobacterium</i> -Mediated Plant Transformation: Biology and Applications. The Arabidopsis Book, 2017, 15, e0186.	0.5	200
4	Nitric oxide and <i>S</i> â€nitrosoglutathione function additively during plant immunity. New Phytologist, 2016, 211, 516-526.	7.3	117
5	A sleigh ride through the SNO: regulation of plant immune function by protein S-nitrosylation. Current Opinion in Plant Biology, 2012, 15, 424-430.	7.1	84
6	Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. Journal of Experimental Botany, 2004, 55, 547-556.	4.8	77
7	Use of ribosomal promoters from Burkholderia cenocepacia and Burkholderia cepacia for improved expression of transporter protein in Escherichia coli. Protein Expression and Purification, 2006, 49, 219-227.	1.3	25
8	Redox regulation of pyruvate kinase M2 by cysteine oxidation and S-nitrosation. Biochemical Journal, 2018, 475, 3275-3291.	3.7	24
9	Isolation and Characterization of a Novel Haloacid Permease from Burkholderia cepacia MBA4. Applied and Environmental Microbiology, 2007, 73, 4874-4880.	3.1	22
10	Stable pH Suppresses Defense Signaling and is the Key to Enhance Agrobacterium-Mediated Transient Expression in Arabidopsis Seedlings. Scientific Reports, 2018, 8, 17071.	3.3	16
11	Cyclic diâ€GMP inactivates T6SS and T4SS activity in <i>Agrobacterium tumefaciens</i> . Molecular Microbiology, 2019, 112, 632-648.	2.5	15
12	A High-Throughput Interbacterial Competition Screen Identifies ClpAP in Enhancing Recipient Susceptibility to Type VI Secretion System-Mediated Attack by Agrobacterium tumefaciens. Frontiers in Microbiology, 2019, 10, 3077.	3.5	15
13	Topological analysis of a haloacid permease of a Burkholderia sp. bacterium with a PhoA-LacZ reporter. BMC Microbiology, 2009, 9, 233.	3.3	13
14	Differentially localized rice ethylene receptors OsERS1 and OsETR2 and their potential role during submergence. Plant Signaling and Behavior, 2017, 12, e1356532.	2.4	12
15	Functional Exploration of the Bacterial Type VI Secretion System in Mutualism: <i>Azorhizobium caulinodans</i> ORS571– <i>Sesbania rostrata</i> as a Research Model. Molecular Plant-Microbe Interactions, 2018, 31, 856-867.	2.6	12
16	Warfare between Host Immunity and Bacterial Weapons. Cell Host and Microbe, 2017, 21, 3-4.	11.0	11
17	Innovation and Application of the Type III Secretion System Inhibitors in Plant Pathogenic Bacteria. Microorganisms, 2020, 8, 1956.	3.6	11
18	Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness. Journal of Bacteriology, 2021, 203, .	2.2	10

Manda Yu

#	Article	IF	CITATIONS
19	Blue–white selection of regulatory genes that affect the expression of dehalogenase IVa of Burkholderia cepacia MBA4. Applied Microbiology and Biotechnology, 2007, 76, 429-437.	3.6	4
20	Quorum-Sensing Master Regulator VfmE Is a c-di-GMP Effector That Controls Pectate Lyase Production in the Phytopathogen Dickeya dadantii. Microbiology Spectrum, 2022, 10, e0180521.	3.0	2
21	The phytopathogen <i>Dickeya dadantii</i> 3937 <i>cpxR</i> locus gene participates in the regulation of virulence and the global câ€diâ€GMP network. Molecular Plant Pathology, 2022, , .	4.2	2
22	Identification of S-Nitrosothiols by the Sequential Cysteine Blocking Technique. Methods in Molecular Biology, 2016, 1424, 163-174.	0.9	0