
Alexander V Zholos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4464131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Post-traumatic recovery of muscle soleus in rats is improved via synergistic effect of C60 fullerene and TRPM8 agonist menthol. Applied Nanoscience (Switzerland), 2022, 12, 467-478.	1.6	10
2	Pilot testing for long-term impact of glycerol-induced acute kidney injury on oxalate homeostasis in rats. Ukrainian Journal of Nephrology and Dialysis, 2022, , 15-24.	0.0	1
3	Electrophysiological characterization of the activating action of a novel liposomal nitric oxide carrier on Maxi-K channels in pulmonary artery smooth muscle cells. Journal of Liposome Research, 2021, 31, 399-408.	1.5	0
4	Single-Walled Carbon Nanotubes Inhibit TRPC4-Mediated Muscarinic Cation Current in Mouse Ileal Myocytes. Nanomaterials, 2021, 11, 3410.	1.9	2
5	Suppression of mICAT in Mouse Small Intestinal Myocytes by General Anaesthetic Ketamine and its Recovery by TRPC4 Agonist (-)-englerin A. Frontiers in Pharmacology, 2020, 11, 594882.	1.6	9
6	Multifunctional TRPV1 Ion Channels in Physiology and Pathology with Focus on the Brain, Vasculature, and Some Visceral Systems. BioMed Research International, 2019, 2019, 1-12.	0.9	47
7	C60 fullerenes selectively inhibit BKCa but not Kv channels in pulmonary artery smooth muscle cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 19, 1-11.	1.7	13
8	Liposomal quercetin potentiates maxi-K channel openings in smooth muscles and restores its activity after oxidative stress. Journal of Liposome Research, 2019, 29, 94-101.	1.5	9
9	Curcuminoids and Novel Opportunities for the Treatment of Alzheimer's Disease: Which Molecules are Actually Effective?. Current Molecular Pharmacology, 2019, 12, 12-26.	0.7	7
10	C 60 fullerenes disrupt cellular signalling leading to TRPC4 and TRPC6 channels opening by the activation of muscarinic receptors and G-proteins in small intestinal smooth muscles. Cellular Signalling, 2018, 43, 40-46.	1.7	13
11	TRPV4 Channel Signaling in Macrophages Promotes Gastrointestinal Motility via Direct Effects on Smooth Muscle Cells. Immunity, 2018, 49, 107-119.e4.	6.6	63
12	Inhalation anaesthetic isoflurane inhibits the muscarinic cation current and carbachol-induced gastrointestinal smooth muscle contractions. European Journal of Pharmacology, 2018, 820, 39-44.	1.7	15
13	TRP Channels as Novel Targets for Endogenous Ligands: Focus on Endocannabinoids and Nociceptive Signalling. Current Neuropharmacology, 2018, 16, 137-150.	1.4	59
14	Commonly-Used General Anesthetic Causes Gastrointestinal Tract Motility Complications. , 2018, , .		0
15	Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nature Communications, 2017, 8, 980.	5.8	106
16	TRPV2 Channels Contribute to Stretch-Activated Cation Currents and Myogenic Constriction in Retinal Arterioles. , 2016, 57, 5637.		35
17	Species-Related Differences in the Properties of TRPC4 Channels in Intestinal Myocytes of Rodents. Neurophysiology, 2016, 48, 220-229.	0.2	5
18	lon channel mechanisms of rat tail artery contraction-relaxation by menthol involving, respectively, TRPM8 activation and L-type Ca ²⁺ channel inhibition. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1416-H1430.	1.5	20

#	Article	IF	CITATIONS
19	THE ROLE OF TRPV4 CATION CHANNELS IN THE REGULATION OF PHENYLEPHRINE-INDUCED CONTRACTION OF RAT PULMONARY ARTERY. Fiziologicheskii Zhurnal, 2016, 62, 79-86.	0.2	4
20	Plasmonic gold nanoparticles possess the ability to open potassium channels in rat thoracic aorta smooth muscles in a remote control manner. Vascular Pharmacology, 2015, 72, 190-196.	1.0	13
21	TRPs in Respiratory Disorders. , 2015, , 483-500.		0
22	Functional and Modeling Studies of the Transmembrane Region of the TRPM8 Channel. Biophysical Journal, 2015, 109, 1840-1851.	0.2	18
23	TRP Channels in Respiratory Pathophysiology: the Role of Oxidative, Chemical Irritant and Temperature Stimuli. Current Neuropharmacology, 2015, 13, 279-291.	1.4	38
24	Functional and pharmacological characterization of volume-regulated anion channels in human normal and cystic fibrosis bronchial and nasal epithelial cells. European Journal of Pharmacology, 2014, 740, 183-191.	1.7	6
25	Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2014, 133, 704-712.e4.	1.5	139
26	TRPC5. Handbook of Experimental Pharmacology, 2014, 222, 129-156.	0.9	44
27	TRP Channels in Vascular Disorders. Current Topics in Medicinal Chemistry, 2013, 13, 295-309.	1.0	11
28	Regulation of Activity of Transient Receptor Potential Melastatin 8 (TRPM8) Channel by Its Short Isoforms. Journal of Biological Chemistry, 2012, 287, 2948-2962.	1.6	43
29	Short Isoforms of the Cold Receptor TRPM8 Inhibit Channel Gating by Mimicking Heat Action Rather than Chemical Inhibitors. Journal of Biological Chemistry, 2012, 287, 2963-2970.	1.6	15
30	Development of primary human nasal epithelial cell cultures for the study of cystic fibrosis pathophysiology. American Journal of Physiology - Cell Physiology, 2012, 303, C1173-C1179.	2.1	45
31	TRPM Channels in the Vasculature. Advances in Experimental Medicine and Biology, 2011, 704, 707-729.	0.8	40
32	Identification of ML204, a Novel Potent Antagonist That Selectively Modulates Native TRPC4/C5 Ion Channels. Journal of Biological Chemistry, 2011, 286, 33436-33446.	1.6	171
33	Voltage- and cold-dependent gating of single TRPM8 ion channels. Journal of General Physiology, 2011, 137, 173-195.	0.9	60
34	Pharmacology of transient receptor potential melastatin channels in the vasculature. British Journal of Pharmacology, 2010, 159, 1559-1571.	2.7	34
35	Rho kinase and protein kinase C involvement in vascular smooth muscle myofilament calcium sensitization in arteries from diabetic rats. British Journal of Pharmacology, 2010, 159, 1724-1731.	2.7	43
36	Critical Role of Pertussis Toxin Sensitive G Proteins in the Activation of TRPC4 and TRPC5 Channels. Biophysical Journal, 2010, 98, 326a-327a.	0.2	1

#	Article	IF	CITATIONS
37	TRPM8 Cation Channel. Effects of Voltage, Cold and Menthol on Single-Channel Gating. Biophysical Journal, 2010, 98, 227a.	0.2	0
38	Reply to "Letter to the editor: â€~Is menthol- or icilin-induced vasodilation mediated by the activation of TRPM8?'― American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H888-H888.	1.5	0
39	Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1868-H1877.	1.5	126
40	Deletion of TRPC4 and TRPC6 in Mice Impairs Smooth Muscle Contraction and Intestinal Motility In Vivo. Gastroenterology, 2009, 137, 1415-1424.	0.6	169
41	Isoform-specific Inhibition of TRPC4 Channel by Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 2008, 283, 10026-10036.	1.6	150
42	Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. Journal of Clinical Investigation, 2007, 117, 1647-1657.	3.9	166
43	Regulation of TRP-like muscarinic cation current in gastrointestinal smooth muscle with special reference to PLC/InsP3/Ca2+ system. Acta Pharmacologica Sinica, 2006, 27, 833-842.	2.8	30
44	Muscarinic receptor-activated cationic channels in murine ileal myocytes. British Journal of Pharmacology, 2006, 149, 179-187.	2.7	23
45	TRPC7 Is a Receptor-Operated DAG-Activated Channel in Human Keratinocytes. Journal of Investigative Dermatology, 2006, 126, 1982-1993.	0.3	46
46	Peculiarities of phospholipase C-dependent release of CA2+ from intracellular stores upon activation of choline and purine receptors in myocytes of the guinea-pig small intestine. Neurophysiology, 2006, 38, 1-8.	0.2	2
47	Ca2+-independent Phospholipase A2-dependent Gating of TRPM8 by Lysophospholipids. Journal of Biological Chemistry, 2006, 281, 40174-40182.	1.6	115
48	Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. Journal of Cellular Physiology, 2005, 204, 320-328.	2.0	96
49	Ca2+- and Volume-sensitive Chloride Currents Are Differentially Regulated by Agonists and Store-operated Ca2+ Entry. Journal of General Physiology, 2005, 125, 197-211.	0.9	38
50	G-protein–gated TRP-like Cationic Channel Activated by Muscarinic Receptors. Journal of General Physiology, 2004, 123, 581-598.	0.9	54
51	Phospholipase C, but not InsP3 or DAG, -dependent activation of the muscarinic receptor-operated cation current in guinea-pig ileal smooth muscle cells. British Journal of Pharmacology, 2004, 141, 23-36.	2.7	41
52	Effects of polyamines on the muscarinic receptor-operated cation current in guinea-pig ileal smooth muscle myocytes. British Journal of Pharmacology, 2004, 143, 968-975.	2.7	12
53	Regulation of muscarinic cationic current in myocytes from guinea-pig ileum by intracellular Ca2+ release: a central role of inositol 1,4,5-trisphosphate receptors. Cell Calcium, 2004, 36, 367-386.	1.1	28
54	Properties of average-conductance cationic channels that mediate cholinergic excitation of guinea-pig ileum myocytes under conditions close to the physiological norm. Neurophysiology, 2004, 36, 247-253.	0.2	1

ALEXANDER V ZHOLOS

#	Article	IF	CITATIONS
55	Cholinergic excitation of smooth muscles: Multiple signaling pathways linking M2 and M3 muscarinic receptors to cationic channels. Neurophysiology, 2004, 36, 398-406.	0.2	4
56	Mechanisms of calcium signaling in smooth muscle cells explored with fluorescence confocal imaging. Neurophysiology, 2004, 36, 407-417.	0.2	2
57	The 47th Annual Meeting of the American Biophysical Society. Neurophysiology, 2003, 35, 149-151.	0.2	Ο
58	Muscarinic Cholinergic Excitation of Smooth Muscle: Signal Transduction and Single Cationic Channel Properties. Neurophysiology, 2003, 35, 283-301.	0.2	13
59	Carbachol-Activated Monovalent Cation-Selective Channels in the Murine Small Intestine. Neurophysiology, 2003, 35, 316.	0.2	2
60	Modulation of Muscarinic Cation Current by Intracellular Ca2+Release: a Central Role of the Inositol 1,4,5-Trisphosphate Receptors. Neurophysiology, 2003, 35, 320.	0.2	0
61	ATP-Induced Calcium Release from the Intracellular Calcium Store in Guinea-Pig Ileal Myocytes. Neurophysiology, 2003, 35, 329.	0.2	1
62	Modulation of the Muscarinic Cation Current by Intracellular Calcium Ions in Guinea-Pig Ileal Myocytes. Neurophysiology, 2003, 35, 347.	0.2	0
63	Effects of G-protein-specific antibodies and Gβγ subunits on the muscarinic receptor-operated cation current in guinea-pig ileal smooth muscle cells. British Journal of Pharmacology, 2003, 139, 605-615.	2.7	47
64	Potential Synergy: Voltage-Driven Steps in Receptor-G Protein Coupling and Beyond. Science Signaling, 2003, 2003, pe52-pe52.	1.6	10
65	Sodium conductance in cultured myenteric AH-type neurons from guinea-pig small intestine. Autonomic Neuroscience: Basic and Clinical, 2002, 96, 93-102.	1.4	13
66	Voltage-dependent inhibition of the muscarinic cationic current in guinea-pig ileal cells by SK&F 96365. British Journal of Pharmacology, 2000, 129, 695-702.	2.7	16
67	Membrane currents in cultured human intestinal smooth muscle cells. Journal of Physiology, 2000, 528, 521-537.	1.3	7
68	Effect of intracellular Ca2+ on muscarinic cationic current in guinea pig ileal smooth muscle cells. Neurophysiology, 2000, 32, 198-199.	0.2	5
69	Voltage-dependent inhibition of muscarinic cationic current in guinea pig ileal cells by the blocker SK&F 96365. Neurophysiology, 2000, 32, 216-216.	0.2	0
70	Membrane ion channels as physiological targets for local Ca2+ signalling. Journal of Microscopy, 1999, 196, 305-316.	0.8	46
71	Muscarinic effects on ion channels in smooth muscle cells. Neurophysiology, 1999, 31, 173-187.	0.2	7
72	EXCITATION-CONTRACTION COUPLING IN GASTROINTESTINAL AND OTHER SMOOTH MUSCLES. Annual Review of Physiology, 1999, 61, 85-115.	5.6	220

Alexander V Zholos

#	Article	IF	CITATIONS
73	Potassium channels of myenteric neurons in guinea-pig small intestine. Neuroscience, 1999, 89, 603-618.	1.1	25
74	Muscarinic cation current and suppression of Ca2+ current in guinea pig ileal smooth muscle cells. European Journal of Pharmacology, 1998, 346, 323-330.	1.7	23
75	Activation of M2 muscarinic receptors in guinea-pig ileum opens cationic channels modulated by M3 muscarinic receptors. Life Sciences, 1997, 60, 1121-1128.	2.0	56
76	Muscarinic receptors activating cationic channels in smooth muscle. Life Sciences, 1997, 60, 1186.	2.0	0
77	Effects of protons on muscarinic receptor cationic current in single visceral smooth muscle cells. American Journal of Physiology - Renal Physiology, 1997, 272, G215-G223.	1.6	6
78	Muscarinic receptor subtypes controlling the cationic current in guinea-pig ileal smooth muscle. British Journal of Pharmacology, 1997, 122, 885-893.	2.7	104
79	A novel GTPâ€dependent mechanism of ileal muscarinic metabotropic channel desensitization. British Journal of Pharmacology, 1996, 119, 997-1005.	2.7	39
80	Effects of divalent cations on muscarinic receptor cationic current in smooth muscle from guineaâ€pig small intestine Journal of Physiology, 1995, 486, 67-82.	1.3	45
81	Modulation of calcium currents by Gâ€proteins and adenosine receptors in myenteric neurones cultured from adult guineaâ€pig small intestine. British Journal of Pharmacology, 1995, 116, 1882-1886.	2.7	30
82	Ca2+ inhibition of inositol trisphosphateâ€induced Ca2+ release in single smooth muscle cells of guineaâ€pig small intestine Journal of Physiology, 1994, 481, 97-109.	1.3	46
83	Gâ€protein control of voltage dependence as well as gating of muscarinic metabotropic channels in guineaâ€pig ileum Journal of Physiology, 1994, 478, 195-202.	1.3	59
84	Potentialâ€dependent inward currents in single isolated smooth muscle cells of the rat ileum Journal of Physiology, 1992, 454, 549-571.	1.3	42
85	Some properties of Ca(2+)â€induced Ca2+ release mechanism in single visceral smooth muscle cell of the guineaâ€pig Journal of Physiology, 1992, 457, 1-25.	1.3	15
86	A potentialâ€dependent fast outward current in single smooth muscle cells isolated from the newborn rat ileum Journal of Physiology, 1992, 454, 573-589.	1.3	18
87	Patch-clamp recording in myenteric neurons of guinea pig small intestine. American Journal of Physiology - Renal Physiology, 1992, 262, G1074-G1078.	1.6	10
88	Properties of the late transient outward current in isolated intestinal smooth muscle cells of the guineaâ€pig Journal of Physiology, 1991, 443, 555-574.	1.3	24
89	The inhibitory action of caffeine on calcium currents in isolated intestinal smooth muscle cells. Pflugers Archiv European Journal of Physiology, 1991, 419, 267-273.	1.3	30
90	Apamin: A highly selective and effective blocker of calcium-dependent potassium conductance. Neurophysiology, 1988, 20, 590-600.	0.2	2

#	Article	IF	CITATIONS
91	Electrical properties and transmembrane ionic current of single smooth muscle cells. Bulletin of Experimental Biology and Medicine, 1986, 101, 259-263.	0.3	1