Donald E Ingber

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4463884/donald-e-ingber-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

258	57,684	112	24 0
papers	citations	h-index	g-index
291 ext. papers	65,116 ext. citations	12.1 avg, IF	8.2 L-index

#	Paper	IF	Citations
258	Establishment of a Modular Anaerobic Human Intestine Chip. <i>Methods in Molecular Biology</i> , 2022 , 2373, 69-85	1.4	3
257	Establishment of physiologically relevant oxygen gradients in microfluidic organ chips <i>Lab on A Chip</i> , 2022 ,	7.2	3
256	Human organs-on-chips for disease modelling, drug development and personalized medicine <i>Nature Reviews Genetics</i> , 2022 ,	30.1	31
255	Ectopic Lymphoid Follicle Formation and Human Seasonal Influenza Vaccination Responses Recapitulated in an Organ-on-a-Chip <i>Advanced Science</i> , 2022 , e2103241	13.6	6
254	Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip <i>Nature Communications</i> , 2022 , 13, 1928	17.4	5
253	Ultra-Rapid Method for Coating Electrochemical Sensors with Antifouling Conductive Nanomaterials Enables Highly Sensitive Multiplexed Detection in Whole Blood <i>Advanced Healthcare Materials</i> , 2021 , e2102244	10.1	4
252	Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip: Cystic fibrosis airway chip. <i>Journal of Cystic Fibrosis</i> , 2021 ,	4.1	6
251	Changes in ABC Transporter Expression during Hematopoiesis Cause Lineage-Biased Cytopenias in Patients Treated with Aurora Kinase Inhibitors. <i>Blood</i> , 2021 , 138, 4292-4292	2.2	
250	Self-assembling short immunostimulatory duplex RNAs with broad spectrum antiviral activity 2021 ,		1
249	Enteric Coronavirus Infection and Treatment Modeled With an Immunocompetent Human Intestine-On-A-Chip. <i>Frontiers in Pharmacology</i> , 2021 , 12, 718484	5.6	7
248	Harnessing Colon Chip Technology to Identify Commensal Bacteria That Promote Host Tolerance to Infection. <i>Frontiers in Cellular and Infection Microbiology</i> , 2021 , 11, 638014	5.9	14
247	Transferrin receptor targeting by de novo sheet extension. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	6
246	COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. <i>Nature</i> , 2021 , 595, 107-113	50.4	124
245	A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. <i>Nature Biomedical Engineering</i> , 2021 , 5, 815-829	19	62
244	Biomaterial vaccines capturing pathogen-associated molecular patterns protect against bacterial infections and septic shock. <i>Nature Biomedical Engineering</i> , 2021 ,	19	5
243	Simulating drug concentrations in PDMS microfluidic organ chips. <i>Lab on A Chip</i> , 2021 , 21, 3509-3519	7.2	18
242	Anomalous COVID-19 tests hinder researchers. <i>Science</i> , 2021 , 371, 244-245	33.3	8

(2020-2021)

241	Graphene Enabled Low-Noise Surface Chemistry for Multiplexed Sepsis Biomarker Detection in Whole Blood. <i>Advanced Functional Materials</i> , 2021 , 31, 2010638	15.6	19
240	Enabling out-of-body experiences for living organs. <i>Journal of Experimental Medicine</i> , 2021 , 218,	16.6	3
239	Mechanosensation Mediates Long-Range Spatial Decision-Making in an Aneural Organism. <i>Advanced Materials</i> , 2021 , 33, e2008161	24	О
238	Laboratory-Generated DNA Can Cause Anomalous Pathogen Diagnostic Test Results. <i>Microbiology Spectrum</i> , 2021 , 9, e0031321	8.9	3
237	Clinically Relevant Influenza Virus Evolution Reconstituted in a Human Lung Airway-on-a-Chip. <i>Microbiology Spectrum</i> , 2021 , 9, e0025721	8.9	8
236	Enabling Multiplexed Electrochemical Detection of Biomarkers with High Sensitivity in Complex Biological Samples. <i>Accounts of Chemical Research</i> , 2021 , 54, 3529-3539	24.3	5
235	On-chip recapitulation of clinical bone marrow toxicities and patient-specific pathophysiology. <i>Nature Biomedical Engineering</i> , 2020 , 4, 394-406	19	97
234	Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. <i>Nature Biomedical Engineering</i> , 2020 , 4, 421-436	19	154
233	YAP Regulates Hematopoietic Stem Cell Formation in Response to the Biomechanical Forces of Blood Flow. <i>Developmental Cell</i> , 2020 , 52, 446-460.e5	10.2	25
232	Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. <i>ALTEX: Alternatives To Animal Experimentation</i> , 2020 , 37, 365-394	4.3	66
231	Increased phosphorylation of ACTN4 leads to podocyte vulnerability and proteinuric kidney disease and is stimulated by high glucose and TGF-b. <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
230	Robotic fluidic coupling and interrogation of multiple vascularized organ chips. <i>Nature Biomedical Engineering</i> , 2020 , 4, 407-420	19	150
229	Biomimetic smoking robot for in vitro inhalation exposure compatible with microfluidic organ chips. <i>Nature Protocols</i> , 2020 , 15, 183-206	18.8	17
228	Human Colon-on-a-Chip Enables Continuous In Vitro Analysis of Colon Mucus Layer Accumulation and Physiology. <i>Cellular and Molecular Gastroenterology and Hepatology</i> , 2020 , 9, 507-526	7.9	75
227	Molecular mapping of transmembrane mechanotransduction through the II integrin-CD98hc-TRPV4 axis. <i>Journal of Cell Science</i> , 2020 , 133,	5.3	12
226	Origami microfluidics for radiant cooling with small temperature differences in buildings. <i>Applied Energy</i> , 2020 , 277, 115610	10.7	7
225	Human Organs-on-Chips for Virology. <i>Trends in Microbiology</i> , 2020 , 28, 934-946	12.4	50
224	Treatment of psoriasis with NFKBIZ siRNA using topical ionic liquid formulations. <i>Science Advances</i> , 2020 , 6, eabb6049	14.3	22

223	Proteomic and Metabolomic Characterization of Human Neurovascular Unit Cells in Response to Methamphetamine. <i>Advanced Biology</i> , 2020 , 4, e1900230	3.5	9
222	Is it Time for Reviewer 3 to Request Human Organ Chip Experiments Instead of Animal Validation Studies?. <i>Advanced Science</i> , 2020 , 7, 2002030	13.6	79
221	Emerging preclinical evidence does not support broad use of hydroxychloroquine in COVID-19 patients. <i>Nature Communications</i> , 2020 , 11, 4253	17.4	24
220	Controllable Fabrication of Inhomogeneous Microcapsules for Triggered Release by Osmotic Pressure. <i>Small</i> , 2019 , 15, e1903087	11	12
219	Tumor-Derived Extracellular Vesicles Breach the Intact Blood-Brain Barrier Transcytosis. <i>ACS Nano</i> , 2019 , 13, 13853-13865	16.7	167
218	Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. <i>Lab on A Chip</i> , 2019 , 19, 452-463	7.2	66
217	Cellular nanoscale stiffness patterns governed by intracellular forces. <i>Nature Materials</i> , 2019 , 18, 1071-	1 <u>9</u> 77	36
216	Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. <i>Nature Communications</i> , 2019 , 10, 2621	17.4	231
215	Human Intestinal Morphogenesis Controlled by Transepithelial Morphogen Gradient and Flow-Dependent Physical Cues in a Microengineered Gut-on-a-Chip. <i>IScience</i> , 2019 , 15, 391-406	6.1	75
214	A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. <i>Nature Biomedical Engineering</i> , 2019 , 3, 520-531	19	283
213	Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. <i>Microbiome</i> , 2019 , 7, 43	16.6	64
212	Reproducing human and cross-species drug toxicities using a Liver-Chip. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	161
211	Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. <i>F1000Research</i> , 2019 , 8, 108	3.6	13
210	Platelet decoys inhibit thrombosis and prevent metastatic tumor formation in preclinical models. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	32
209	An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. <i>Nature Nanotechnology</i> , 2019 , 14, 1143-1149	28.7	125
208	AAV-mediated gene therapy targeting TRPV4 mechanotransduction for inhibition of pulmonary vascular leakage. <i>APL Bioengineering</i> , 2019 , 3, 046103	6.6	15
207	Rapid Coating Process Generates Omniphobic Dentures in Minutes to Reduce Biofouling. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 420-424	5.5	7
206	Modelling cancer in microfluidic human organs-on-chips. <i>Nature Reviews Cancer</i> , 2019 , 19, 65-81	31.3	340

205	Multi-scale modeling reveals use of hierarchical tensegrity principles at the molecular, multi-molecular, and cellular levels. <i>Extreme Mechanics Letters</i> , 2018 , 20, 21-28	3.9	7
204	Organ-on-Chip Recapitulates Thrombosis Induced by an anti-CD154 Monoclonal Antibody: Translational Potential of Advanced Microengineered Systems. <i>Clinical Pharmacology and Therapeutics</i> , 2018 , 104, 1240-1248	6.1	62
203	Rapid Prototyping of Thermoplastic Microfluidic Devices. <i>Methods in Molecular Biology</i> , 2018 , 1771, 16	1-1.740	5
202	Modeling radiation injury-induced cell death and countermeasure drug responses in a human Gut-on-a-Chip. <i>Cell Death and Disease</i> , 2018 , 9, 223	9.8	100
201	Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. <i>Scientific Reports</i> , 2018 , 8, 2871	4.9	356
200	PAR1 agonists stimulate APC-like endothelial cytoprotection and confer resistance to thromboinflammatory injury. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E982-E991	11.5	33
199	Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips. <i>Annual Review of Pharmacology and Toxicology</i> , 2018 , 58, 37-64	17.9	103
198	Microfluidic Organ-on-a-Chip Models of Human Intestine. <i>Cellular and Molecular Gastroenterology and Hepatology</i> , 2018 , 5, 659-668	7.9	299
197	Primary Human Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics. <i>Clinical Pharmacology and Therapeutics</i> , 2018 , 103, 332-340	6.1	161
196	Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip. <i>Nature Protocols</i> , 2018 , 13, 1662-1685	18.8	72
195	A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. <i>Nature Biotechnology</i> , 2018 , 36, 865-874	44.5	207
194	From mechanobiology to developmentally inspired engineering. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2018 , 373,	5.8	21
193	Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	18
192	Developmentally inspired human Torgans on chipsT Development (Cambridge), 2018, 145,	6.6	59
191	Modulation of the Cellular Uptake of DNA Origami through Control over Mass and Shape. <i>Nano Letters</i> , 2018 , 18, 3557-3564	11.5	121
190	Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip. <i>Nature Biomedical Engineering</i> , 2017 , 1,	19	253
189	SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. <i>Microfluidics and Nanofluidics</i> , 2017 , 21, 1	2.8	52
188	Human Lung Small Airway-on-a-Chip Protocol. <i>Methods in Molecular Biology</i> , 2017 , 1612, 345-365	1.4	40

187	Ultrasound-sensitive nanoparticle aggregates for targeted drug delivery. <i>Biomaterials</i> , 2017 , 139, 187-	194 5.6	46
186	Organs-on-Chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities. <i>Lab on A Chip</i> , 2017 , 17, 2294-2302	7.2	134
185	Reproductive endocrinology: Cycling through the menstrual cycle - an out-of-body experience. <i>Nature Reviews Endocrinology</i> , 2017 , 13, 380-382	15.2	1
184	Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function. <i>Lab on A Chip</i> , 2017 , 17, 2264-2271	7.2	192
183	Human Organ Chip Models Recapitulate Orthotopic Lung Cancer Growth, Therapeutic Responses, and Tumor Dormancy In[Vitro. <i>Cell Reports</i> , 2017 , 21, 508-516	10.6	204
182	A Biologically Inspired, Functionally Graded End Effector for Soft Robotics Applications. <i>Soft Robotics</i> , 2017 , 4, 317-323	9.2	33
181	Art Advancing Science: Filmmaking Leads to Molecular Insights at the Nanoscale. <i>ACS Nano</i> , 2017 , 11, 12156-12166	16.7	4
180	Theory and associated phenomenology for intrinsic mortality arising from natural selection. <i>PLoS ONE</i> , 2017 , 12, e0173677	3.7	6
179	Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds. <i>Stem Cell Research</i> , 2017 , 24, 55-60	1.6	12
178	The Wyss institute: A new model for medical technology innovation and translation across the academic-industrial interface. <i>Bioengineering and Translational Medicine</i> , 2017 , 2, 247-257	14.8	9
177	An Engineered Human Fc-Mannose-Binding-Lectin Captures Circulating Tumor Cells. <i>Advanced Biology</i> , 2017 , 1, e1700094	3.5	8
176	Direct Bonding of Chitosan Biomaterials to Tissues Using Transglutaminase for Surgical Repair or Device Implantation. <i>Tissue Engineering - Part A</i> , 2017 , 23, 135-142	3.9	13
175	Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro. <i>PLoS ONE</i> , 2017 , 12, e0169412	3.7	112
174	Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy. <i>Oncogene</i> , 2016 , 35, 314-22	9.2	95
173	Commendation for Exposing Key Advantage of Organ Chip Approach. Cell Systems, 2016, 3, 411	10.6	7
172	Matched-Comparative Modeling of Normal and Diseased Human Airway Responses Using a Microengineered Breathing Lung Chip. <i>Cell Systems</i> , 2016 , 3, 456-466.e4	10.6	152
171	Co-culture of Living Microbiome with Microengineered Human Intestinal Villi in a Gut-on-a-Chip Microfluidic Device. <i>Journal of Visualized Experiments</i> , 2016 ,	1.6	34
170	A Broad-Spectrum Infection Diagnostic that Detects Pathogen-Associated Molecular Patterns (PAMPs) in Whole Blood. <i>EBioMedicine</i> , 2016 , 9, 217-227	8.8	24

(2015-2016)

169	inflammation in a human gut-on-a-chip. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E7-15	11.5	523
168	Modeling Hematopoiesis and Responses to Radiation Countermeasures in a Bone Marrow-on-a-Chip. <i>Tissue Engineering - Part C: Methods</i> , 2016 , 22, 509-15	2.9	40
167	Reverse Engineering Human Pathophysiology with Organs-on-Chips. Cell, 2016, 164, 1105-1109	56.2	131
166	Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. <i>Nature Methods</i> , 2016 , 13, 151-7	21.6	426
165	A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. <i>Nature Communications</i> , 2016 , 7, 10176	17.4	109
164	A Chemical APC Mimetic Protects Endothelium from Thromboinflammatory Injury. <i>Blood</i> , 2016 , 128, 3835-3835	2.2	2
163	Rapid Isolation of Staphylococcus aureus Pathogens from Infected Clinical Samples Using Magnetic Beads Coated with Fc-Mannose Binding Lectin. <i>PLoS ONE</i> , 2016 , 11, e0156287	3.7	17
162	Distinct Contributions of Astrocytes and Pericytes to Neuroinflammation Identified in a 3D Human Blood-Brain Barrier on a Chip. <i>PLoS ONE</i> , 2016 , 11, e0150360	3.7	258
161	Application of a Halbach magnetic array for long-range cell and particle separations in biological samples. <i>Applied Physics Letters</i> , 2016 , 108, 213702	3.4	11
160	Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. <i>Biomedical Microdevices</i> , 2016 , 18, 73	3.7	80
159	Improved treatment of systemic blood infections using antibiotics with extracorporeal opsonin hemoadsorption. <i>Biomaterials</i> , 2015 , 67, 382-92	15.6	48
158	Control of cancer formation by intrinsic genetic noise and microenvironmental cues. <i>Nature Reviews Cancer</i> , 2015 , 15, 499-509	31.3	44
157	Programed Death is Favored by Natural Selection in Spatial Systems. <i>Physical Review Letters</i> , 2015 , 114, 238103	7.4	19
156	Biomechanical forces promote blood development through prostaglandin E2 and the cAMP-PKA signaling axis. <i>Journal of Experimental Medicine</i> , 2015 , 212, 665-80	16.6	58
155	Generation of biocompatible droplets for in vivo and in vitro measurement of cell-generated mechanical stresses. <i>Methods in Cell Biology</i> , 2015 , 125, 373-90	1.8	12
154	Targeted drug delivery to flow-obstructed blood vessels using mechanically activated nanotherapeutics. <i>JAMA Neurology</i> , 2015 , 72, 119-22	17.2	31
153	Shear-Activated Nanoparticle Aggregates Combined With Temporary Endovascular Bypass to Treat Large Vessel Occlusion. <i>Stroke</i> , 2015 , 46, 3507-13	6.7	32
152	Developmentally Inspired Regenerative Organ Engineering 2015 , 17-24		

151	Mesenchymal condensation-dependent accumulation of collagen VI stabilizes organ-specific cell fates during embryonic tooth formation. <i>Developmental Dynamics</i> , 2015 , 244, 713-23	2.9	14
150	Optimization of Pathogen Capture in Flowing Fluids with Magnetic Nanoparticles. <i>Small</i> , 2015 , 11, 5657	-66	32
149	Stability of Surface-Immobilized Lubricant Interfaces under Flow. <i>Chemistry of Materials</i> , 2015 , 27, 1792	-138600	136
148	Engineered in vitro disease models. <i>Annual Review of Pathology: Mechanisms of Disease</i> , 2015 , 10, 195-2	6 <u>74</u>	373
147	Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. <i>Lab on A Chip</i> , 2015 , 15, 745-52	7.2	105
146	A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. <i>Scientific Reports</i> , 2014 , 4, 3896	4.9	102
145	Manufacturing of Large-Scale Functional Objects Using Biodegradable Chitosan Bioplastic. <i>Macromolecular Materials and Engineering</i> , 2014 , 299, 932-938	3.9	77
144	Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. <i>Nature Methods</i> , 2014 , 11, 663-9	21.6	293
143	Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. <i>Advanced Drug Delivery Reviews</i> , 2014 , 79-80, 107-18	18.5	163
142	Tensegrity, cellular biophysics, and the mechanics of living systems. <i>Reports on Progress in Physics</i> , 2014 , 77, 046603	14.4	254
141	Quantifying cell-generated mechanical forces within living embryonic tissues. <i>Nature Methods</i> , 2014 , 11, 183-9	21.6	257
140	Silencing HoxA1 by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. <i>Science Translational Medicine</i> , 2014 , 6, 217ra2	17.5	55
139	A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. <i>Nature Biotechnology</i> , 2014 , 32, 1134-40	44.5	433
138	A microdevice for rapid optical detection of magnetically captured rare blood pathogens. <i>Lab on A Chip</i> , 2014 , 14, 182-8	7.2	45
137	Microfluidic organs-on-chips. <i>Nature Biotechnology</i> , 2014 , 32, 760-72	44.5	1875
136	Stationary nanoliter droplet array with a substrate of choice for single adherent/nonadherent cell incubation and analysis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 11293-8	11.5	52
135	An extracorporeal blood-cleansing device for sepsis therapy. <i>Nature Medicine</i> , 2014 , 20, 1211-6	50.5	199
134	Mechanotransduction of fluid stresses governs 3D cell migration. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2447-52	11.5	173

(2012-2014)

133	Developmentally-inspired shrink-wrap polymers for mechanical induction of tissue differentiation. <i>Advanced Materials</i> , 2014 , 26, 3253-7	24	20
132	Mechanobiology, Tissue Development and Organ Engineering 2014 , 309-322		2
131	Paxillin controls endothelial cell migration and tumor angiogenesis by altering neuropilin 2 expression. <i>Journal of Cell Science</i> , 2014 , 127, 1672-83	5.3	25
130	An artificial vasculature for adaptive thermal control of windows. <i>Solar Energy Materials and Solar Cells</i> , 2013 , 117, 429-436	6.4	24
129	Bioinspired Chitinous Material Solutions for Environmental Sustainability and Medicine. <i>Advanced Functional Materials</i> , 2013 , 23, 4454-4466	15.6	43
128	Breast cancer normalization induced by embryonic mesenchyme is mediated by extracellular matrix biglycan. <i>Integrative Biology (United Kingdom)</i> , 2013 , 5, 1045-56	3.7	26
127	Shear-Responsive Platelet Mimetics for Targeted Drug Delivery. <i>Israel Journal of Chemistry</i> , 2013 , 53, n/a-n/a	3.4	2
126	Platform for high-throughput testing of the effect of soluble compounds on 3D cell cultures. <i>Analytical Chemistry</i> , 2013 , 85, 8085-94	7.8	103
125	Clear castable polyurethane elastomer for fabrication of microfluidic devices. <i>Lab on A Chip</i> , 2013 , 13, 3956-64	7.2	85
124	Mechanobiology and developmental control. <i>Annual Review of Cell and Developmental Biology</i> , 2013 , 29, 27-61	12.6	279
123	Microfabrication of human organs-on-chips. <i>Nature Protocols</i> , 2013 , 8, 2135-57	18.8	441
122	SLLISWD sequence in the 10FNIII domain initiates fibronectin fibrillogenesis. <i>Journal of Biological Chemistry</i> , 2013 , 288, 21329-21340	5.4	21
121	Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. <i>Integrative Biology (United Kingdom)</i> , 2013 , 5, 1130-40	3.7	438
120	Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. <i>Nature Communications</i> , 2013 , 4, 1759	17.4	87
119	Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. <i>Integrative Biology (United Kingdom)</i> , 2013 , 5, 1119-29	3.7	514
118	Intraductal injection for localized drug delivery to the mouse mammary gland. <i>Journal of Visualized Experiments</i> , 2013 ,	1.6	22
117	How changes in extracellular matrix mechanics and gene expression variability might combine to drive cancer progression. <i>PLoS ONE</i> , 2013 , 8, e76122	3.7	28
116	Unexpected strength and toughness in chitosan-fibroin laminates inspired by insect cuticle. <i>Advanced Materials</i> , 2012 , 24, 480-4	24	74

115	A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. <i>Science Translational Medicine</i> , 2012 , 4, 159ra147	17.5	624
114	A mini-microscope for in situ monitoring of cells. <i>Lab on A Chip</i> , 2012 , 12, 3976-82	7.2	55
113	Inhibition of mammary tumor growth using lysyl oxidase-targeting nanoparticles to modify extracellular matrix. <i>Nano Letters</i> , 2012 , 12, 3213-7	11.5	83
112	A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. <i>Lab on A Chip</i> , 2012 , 12, 2175-81	7.2	235
111	Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. <i>Lab on A Chip</i> , 2012 , 12, 2165-74	7.2	991
110	Mechanosensitive mechanisms in transcriptional regulation. <i>Journal of Cell Science</i> , 2012 , 125, 3061-73	5.3	285
109	Microengineered physiological biomimicry: organs-on-chips. <i>Lab on A Chip</i> , 2012 , 12, 2156-64	7.2	505
108	Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. <i>Science</i> , 2012 , 337, 738-42	33.3	347
107	Paxillin controls directional cell motility in response to physical cues. <i>Cell Adhesion and Migration</i> , 2012 , 6, 502-8	3.2	12
106	Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. <i>Developmental Cell</i> , 2011 , 21, 758-69	10.2	137
105	Paxillin mediates sensing of physical cues and regulates directional cell motility by controlling lamellipodia positioning. <i>PLoS ONE</i> , 2011 , 6, e28303	3.7	33
104	From 3D cell culture to organs-on-chips. <i>Trends in Cell Biology</i> , 2011 , 21, 745-54	18.3	1235
103	Self-assembly of three-dimensional prestressed tensegrity structures from DNA. <i>Nature Nanotechnology</i> , 2010 , 5, 520-4	28.7	301
102	Mechanical control of tissue and organ development. <i>Development (Cambridge)</i> , 2010 , 137, 1407-20	6.6	604
101	Reconstituting organ-level lung functions on a chip. <i>Science</i> , 2010 , 328, 1662-8	33.3	2416
100	Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. <i>Integrative Biology (United Kingdom)</i> , 2010 , 2, 435-42	3.7	179
99	From cellular mechanotransduction to biologically inspired engineering: 2009 Pritzker Award Lecture, BMES Annual Meeting October 10, 2009. <i>Annals of Biomedical Engineering</i> , 2010 , 38, 1148-61	4.7	75
98	Paper-supported 3D cell culture for tissue-based bioassays. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 18457-62	11.5	322

(2006-2009)

97	TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. <i>Circulation Research</i> , 2009 , 104, 1123-30	15.7	259
96	Cytoskeletal control of growth and cell fate switching. Current Opinion in Cell Biology, 2009, 21, 864-70	9	170
95	Mechanical control of cAMP signaling through integrins is mediated by the heterotrimeric Galphas protein. <i>Journal of Cellular Biochemistry</i> , 2009 , 106, 529-38	4.7	42
94	A mechanosensitive transcriptional mechanism that controls angiogenesis. <i>Nature</i> , 2009 , 457, 1103-8	50.4	416
93	Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. <i>Nature Reviews Molecular Cell Biology</i> , 2009 , 10, 75-82	48.7	1245
92	Micromagnetic-microfluidic blood cleansing device. <i>Lab on A Chip</i> , 2009 , 9, 1171-7	7.2	160
91	Tensegrity-guided self assembly: from molecules to living cells. Soft Matter, 2009, 5, 1137-1145	3.6	55
90	Nanomagnetic actuation of receptor-mediated signal transduction. <i>Nature Nanotechnology</i> , 2008 , 3, 36-40	28.7	247
89	Can cancer be reversed by engineering the tumor microenvironment?. <i>Seminars in Cancer Biology</i> , 2008 , 18, 356-64	12.7	229
88	Directional control of cell motility through focal adhesion positioning and spatial control of Rac activation. <i>FASEB Journal</i> , 2008 , 22, 1649-59	0.9	125
87	A multi-modular tensegrity model of an actin stress fiber. <i>Journal of Biomechanics</i> , 2008 , 41, 2379-87	2.9	78
86	Fibronectin unfolding revisited: modeling cell traction-mediated unfolding of the tenth type-III repeat. <i>PLoS ONE</i> , 2008 , 3, e2373	3.7	40
85	Synaptic reorganization in scaled networks of controlled size. <i>Journal of Neuroscience</i> , 2007 , 27, 13581-	9 6.6	41
84	Filamin links cell shape and cytoskeletal structure to Rho regulation by controlling accumulation of p190RhoGAP in lipid rafts. <i>Journal of Cell Science</i> , 2007 , 120, 456-67	5.3	87
83	Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. <i>Journal of Cellular Physiology</i> , 2006 , 207, 187-94	7	184
82	Integrins beta1, alpha6, and alpha3 contribute to mechanical strain-induced differentiation of fetal lung type II epithelial cells via distinct mechanisms. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2006 , 290, L343-50	5.8	35
81	Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. <i>Journal of Cell Science</i> , 2006 , 119, 508-18	5.3	361
80	Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. Journal of Cell Biology, 2006 , 173, 733-41	7.3	503

79	Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. <i>Biophysical Journal</i> , 2006 , 90, 3762-73	2.9	511
78	Tissue engineering and developmental biology: going biomimetic. <i>Tissue Engineering</i> , 2006 , 12, 3265-83	3	233
77	Cellular mechanotransduction: putting all the pieces together again. FASEB Journal, 2006, 20, 811-27	0.9	1240
76	Mechanical control of tissue morphogenesis during embryological development. <i>International Journal of Developmental Biology</i> , 2006 , 50, 255-66	1.9	275
75	Combined microfluidic-micromagnetic separation of living cells in continuous flow. <i>Biomedical Microdevices</i> , 2006 , 8, 299-308	3.7	307
74	Cell fates as high-dimensional attractor states of a complex gene regulatory network. <i>Physical Review Letters</i> , 2005 , 94, 128701	7.4	480
73	Cell tension, matrix mechanics, and cancer development. Cancer Cell, 2005, 8, 175-6	24.3	321
72	Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. <i>Developmental Dynamics</i> , 2005 , 232, 268-81	2.9	222
71	Mechanical control of tissue growth: function follows form. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 11571-2	11.5	173
70	Control of the direction of lamellipodia extension through changes in the balance between Rac and Rho activities. <i>MCB Molecular and Cellular Biomechanics</i> , 2005 , 2, 135-43	1.2	8
69	Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. <i>Journal of Biological Chemistry</i> , 2004 , 279, 26323-30	5.4	172
68	Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. <i>American Journal of Physiology - Cell Physiology</i> , 2004 , 286, C518-28	5.4	162
67	Mechanical properties of individual focal adhesions probed with a magnetic microneedle. <i>Biochemical and Biophysical Research Communications</i> , 2004 , 313, 758-64	3.4	123
66	Global cytoskeletal control of mechanotransduction in kidney epithelial cells. <i>Experimental Cell Research</i> , 2004 , 301, 23-30	4.2	101
65	Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles. <i>Bioinformatics</i> , 2003 , 19, 2321-2	7.2	161
64	Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. <i>Nature Genetics</i> , 2003 , 33, 129-37	36.3	1593
63	Mechanobiology and diseases of mechanotransduction. <i>Annals of Medicine</i> , 2003 , 35, 564-77	1.5	597
62	Tensegrity II. How structural networks influence cellular information processing networks. <i>Journal of Cell Science</i> , 2003 , 116, 1397-408	5.3	683

61	Tensegrity I. Cell structure and hierarchical systems biology. <i>Journal of Cell Science</i> , 2003 , 116, 1157-73	5.3	985
60	Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. <i>FASEB Journal</i> , 2002 , 16, 1195-204	0.9	390
59	Controlling Mammalian Cell Spreading and Cytoskeletal Arrangement with Conveniently Fabricated Continuous Wavy Features on Poly(dimethylsiloxane). <i>Langmuir</i> , 2002 , 18, 3273-3280	4	169
58	A discrete cell cycle checkpoint in late G(1) that is cytoskeleton-dependent and MAP kinase (Erk)-independent. <i>Experimental Cell Research</i> , 2002 , 275, 255-64	4.2	67
57	Control of embryonic lung branching morphogenesis by the Rho activator, cytotoxic necrotizing factor 1. <i>Journal of Surgical Research</i> , 2002 , 104, 95-100	2.5	48
56	Topographical Micropatterning of Poly(dimethylsiloxane) Using Laminar Flows of Liquids in Capillaries. <i>Advanced Materials</i> , 2001 , 13, 570-574	24	114
55	Subcellular positioning of small molecules. <i>Nature</i> , 2001 , 411, 1016	50.4	419
54	Mechanical behavior in living cells consistent with the tensegrity model. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2001 , 98, 7765-70	11.5	538
53	Soft lithography in biology and biochemistry. <i>Annual Review of Biomedical Engineering</i> , 2001 , 3, 335-73	12	2115
52	Selective Deposition of Proteins and Cells in Arrays of Microwells. <i>Langmuir</i> , 2001 , 17, 2828-2834	4	201
51	The origin of cellular life. <i>BioEssays</i> , 2000 , 22, 1160-70	4.1	46
50	Mechanical control of cyclic AMP signalling and gene transcription through integrins. <i>Nature Cell Biology</i> , 2000 , 2, 666-8	23.4	221
49	Patterning Mammalian Cells Using Elastomeric Membranes. <i>Langmuir</i> , 2000 , 16, 7811-7819	4	271
48	The structural and mechanical complexity of cell-growth control. <i>Nature Cell Biology</i> , 1999 , 1, E131-8	23.4	610
47	Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. <i>In Vitro Cellular and Developmental Biology - Animal</i> , 1999 , 35, 441-8	2.6	350
46	Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. <i>Nature</i> , 1998 , 392, 730-3	50.4	327
45	The architecture of life. <i>Scientific American</i> , 1998 , 278, 48-57	0.5	337
44	DNA topoisomerase II can drive changes in higher order chromosome architecture without enzymatically modifying DNA. <i>Journal of Cellular Biochemistry</i> , 1998 , 69, 127-42	4.7	27

43	Using Mixed Self-Assembled Monolayers Presenting RGD and (EG)3OH Groups To Characterize Long-Term Attachment of Bovine Capillary Endothelial Cells to Surfaces. <i>Journal of the American Chemical Society</i> , 1998 , 120, 6548-6555	16.4	300
42	Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 849-54	11.5	1319
41	Tensegrity: the architectural basis of cellular mechanotransduction. <i>Annual Review of Physiology</i> , 1997 , 59, 575-99	23.1	1268
40	Geometric control of cell life and death. <i>Science</i> , 1997 , 276, 1425-8	33.3	3949
39	Mechanical continuity and reversible chromosome disassembly within intact genomes removed from living cells. <i>Journal of Cellular Biochemistry</i> , 1997 , 65, 114-130	4.7	124
38	Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circulation Research, 1997, 80, 281-9	15.7	126
37	Mechanical continuity and reversible chromosome disassembly within intact genomes removed from living cells. <i>Journal of Cellular Biochemistry</i> , 1997 , 65, 114-30	4.7	52
36	Integrins, tensegrity, and mechanotransduction. <i>Gravitational and Space Biology Bulletin:</i> Publication of the American Society for Gravitational and Space Biology, 1997 , 10, 49-55		28
35	A microstructural approach to cytoskeletal mechanics based on tensegrity. <i>Journal of Theoretical Biology</i> , 1996 , 181, 125-36	2.3	187
34	Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. <i>Biochemistry and Cell Biology</i> , 1995 , 73, 327-35	3.6	192
33	Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. <i>Journal of Cell Science</i> , 1995 , 108 (Pt 6), 2311-20	5.3	57
32	Engineering cell shape and function. <i>Science</i> , 1994 , 264, 696-8	33.3	1270
31	Hollow fibers for hepatocyte encapsulation and transplantation: studies of survival and function in rats. <i>Cell Transplantation</i> , 1994 , 3, 373-85	4	41
30	Mechanotransduction across the cell surface and through the cytoskeleton. <i>Science</i> , 1993 , 260, 1124-7	33.3	2466
29	The riddle of morphogenesis: a question of solution chemistry or molecular cell engineering?. <i>Cell</i> , 1993 , 75, 1249-52	56.2	194
28	Prevascularization of porous biodegradable polymers. <i>Biotechnology and Bioengineering</i> , 1993 , 42, 716-	23 .9	297
27	Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. <i>Journal of Biomedical Materials Research Part B</i> , 1993 , 27, 183-9		476
26	Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. <i>Journal of Cell Science</i> , 1993 , 104 (Pt 3), 613-27	5.3	216

25	Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. <i>Journal of Cell Science</i> , 1993 , 104, 613-627	5.3	777
24	Hepatocyte culture on biodegradable polymeric substrates. <i>Biotechnology and Bioengineering</i> , 1991 , 38, 145-58	4.9	119
23	Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1991 , 88, 7849-53	11.5	344
22	Control of capillary growth and differentiation by extracellular matrix. Use of a tensegrity (tensional integrity) mechanism for signal processing. <i>Chest</i> , 1991 , 99, 34S-40S	5.3	33
21	Fibronectin controls capillary endothelial cell growth by modulating cell shape. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1990 , 87, 3579-83	11.5	427
20	Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. <i>Journal of Cell Biology</i> , 1989 , 109, 317-30	7.3	774
19	How does extracellular matrix control capillary morphogenesis?. Cell, 1989, 58, 803-5	56.2	429
18	Basement membrane as a spatial organizer of polarized epithelia. Exogenous basement membrane reorients pancreatic epithelial tumor cells in vitro. <i>American Journal of Pathology</i> , 1986 , 122, 129-39	5.8	91
17	Role of basal lamina in neoplastic disorganization of tissue architecture. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1981 , 78, 3901-5	11.5	168
16	Vascular Control through Tensegrity-Based Integration of Mechanics and Chemistry1786-1792		1
15	Nutritional deficiency recapitulates intestinal injury associated with environmental enteric dysfunction in patient-derived Organ Chips		1
14	Human bone marrow disorders recapitulated in vitro using organ chip technology		3
13	Modular biomaterials vaccine technology protects against multiple pathogens and septic shock		1
12	Human organ chip-enabled pipeline to rapidly repurpose therapeutics during viral pandemics		39
11	Complex human gut microbiome cultured in anaerobic human intestine chips		7
10	Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function, drug penetration, and antibody shuttling properties		1
9	Species-specific enhancement of enterohemorrhagic E. Coli pathogenesis mediated by microbiome mo	etabolit	:e s
8	A robotic platform for fluidically-linked human body-on-chips experimentation		1

7	Liver-Chip: Reproducing Human and Cross-Species Toxicities	4
6	Discovery of influenza drug resistance mutations and host therapeutic targets using a human airway chip	10
5	Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiolog] y 1
4	Mechanical control of innate immune responses against viral infection revealed in a human Lung Alveolus Chip	2
3	Rapid antifouling nanocomposite coating enables highly sensitive multiplexed electrochemical detection of myocardial infarction and concussion markers	1
2	Modeling Pulmonary Cystic Fibrosis in a Human Lung Airway-on-a-chip	2

Qualifying a human Liver-Chip for predictive toxicology: Performance assessment and economic implications 3