List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4463734/publications.pdf Version: 2024-02-01

	36271	43868
11,407	51	91
citations	h-index	g-index
331	331	5287
docs citations	times ranked	citing authors
	11,407 citations 331 docs citations	11,40751citationsh-index331331docs citations131times ranked

#	Article	IF	CITATIONS
1	Viscosity of glass-forming liquids. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19780-19784.	3.3	757
2	Resonant Waveguide Grating Biosensor for Living Cell Sensing. Biophysical Journal, 2006, 91, 1925-1940.	0.2	361
3	Towards Ultrastrong Glasses. Advanced Materials, 2011, 23, 4578-4586.	11.1	314
4	Topological Principles of Borosilicate Glass Chemistry. Journal of Physical Chemistry B, 2011, 115, 12930-12946.	1.2	289
5	Composition dependence of glass transition temperature and fragility. I. A topological model incorporating temperature-dependent constraints. Journal of Chemical Physics, 2009, 130, 094503.	1.2	284
6	Understanding Glass through Differential Scanning Calorimetry. Chemical Reviews, 2019, 119, 7848-7939.	23.0	258
7	Prediction of Glass Hardness Using Temperature-Dependent Constraint Theory. Physical Review Letters, 2010, 105, 115503.	2.9	225
8	Composition dependence of glass transition temperature and fragility. II. A topological model of alkali borate liquids. Journal of Chemical Physics, 2009, 130, 234503.	1.2	208
9	Accelerating the Design of Functional Glasses through Modeling. Chemistry of Materials, 2016, 28, 4267-4277.	3.2	204
10	The glassy state of matter: Its definition and ultimate fate. Journal of Non-Crystalline Solids, 2017, 471, 490-495.	1.5	201
11	A metal-organic framework with ultrahigh glass-forming ability. Science Advances, 2018, 4, eaao6827.	4.7	196
12	Quantitative Design of Glassy Materials Using Temperature-Dependent Constraint Theory. Chemistry of Materials, 2010, 22, 5358-5365.	3.2	156
13	Nonequilibrium viscosity of glass. Physical Review B, 2009, 80, .	1.1	144
14	Fragile-to-strong transition in metallic glass-forming liquids. Journal of Chemical Physics, 2010, 133, 014508.	1.2	136
15	Viscosity of glassâ€forming systems. Journal of the American Ceramic Society, 2017, 100, 6-25.	1.9	136
16	Dynamics of Glass Relaxation at Room Temperature. Physical Review Letters, 2013, 110, 265901.	2.9	133
17	Computing the viscosity of supercooled liquids. Journal of Chemical Physics, 2009, 130, 224504.	1.2	128
18	Structure and properties of sodium aluminosilicate glasses from molecular dynamics simulations. Journal of Chemical Physics, 2013, 139, 044507.	1.2	127

#	Article	lF	CITATIONS
19	Two Centuries of Glass Research: Historical Trends, Current Status, and Grand Challenges for the Future. International Journal of Applied Glass Science, 2014, 5, 313-327.	1.0	122
20	A new transferable interatomic potential for molecular dynamics simulations of borosilicate glasses. Journal of Non-Crystalline Solids, 2018, 498, 294-304.	1.5	121
21	Glass Science in the United States: Current Status and Future Directions. International Journal of Applied Glass Science, 2014, 5, 2-15.	1.0	119
22	Continuously broken ergodicity. Journal of Chemical Physics, 2007, 126, 184511.	1.2	112
23	Cooling rate effects in sodium silicate glasses: Bridging the gap between molecular dynamics simulations and experiments. Journal of Chemical Physics, 2017, 147, 074501.	1.2	107
24	Fictive Temperature and the Glassy State. Journal of the American Ceramic Society, 2009, 92, 75-86.	1.9	105
25	The laboratory glass transition. Journal of Chemical Physics, 2007, 126, 224504.	1.2	100
26	Composition–structure–property relationships in boroaluminosilicate glasses. Journal of Non-Crystalline Solids, 2012, 358, 993-1002.	1.5	98
27	Topological origin of stretched exponential relaxation in glass. Journal of Chemical Physics, 2011, 135, 214502.	1.2	96
28	Statistical mechanics of glass. Journal of Non-Crystalline Solids, 2014, 396-397, 41-53.	1.5	96
29	Structure and mechanical properties of compressed sodium aluminosilicate glasses: Role of non-bridging oxygens. Journal of Non-Crystalline Solids, 2016, 441, 49-57.	1.5	89
30	Universality of the high-temperature viscosity limit of silicate liquids. Physical Review B, 2011, 83, .	1.1	86
31	Mixed alkaline earth effect in sodium aluminosilicate glasses. Journal of Non-Crystalline Solids, 2013, 369, 61-68.	1.5	85
32	Decoding the glass genome. Current Opinion in Solid State and Materials Science, 2018, 22, 58-64.	5.6	84
33	Selenium glass transition: A model based on the enthalpy landscape approach and nonequilibrium statistical mechanics. Physical Review B, 2007, 76, .	1.1	71
34	Atomistic understanding of the network dilation anomaly in ion-exchanged glass. Journal of Non-Crystalline Solids, 2012, 358, 316-320.	1.5	68
35	Metabasin Approach for Computing the Master Equation Dynamics of Systems with Broken Ergodicity. Journal of Physical Chemistry A, 2007, 111, 7957-7965.	1.1	67
36	Irreversibility of Pressure Induced Boron Speciation Change in Glass. Scientific Reports, 2014, 4, 3770.	1.6	65

#	Article	IF	CITATIONS
37	Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems. Journal of Chemical Physics, 2010, 133, 164503.	1.2	63
38	A Nonequilibrium Statistical Mechanical Model of Structural Relaxation in Glass. Journal of the American Ceramic Society, 2006, 89, 1091-1094.	1.9	61
39	Glass: The Nanotechnology Connection. International Journal of Applied Glass Science, 2013, 4, 64-75.	1.0	59
40	Grand Challenges in Glass Science. Frontiers in Materials, 2014, 1, .	1.2	59
41	Interfacial adhesion behavior of polyimides on silica glass: A molecular dynamics study. Polymer, 2016, 98, 1-10.	1.8	59
42	Optical properties of a melt-quenched metal–organic framework glass. Optics Letters, 2019, 44, 1623.	1.7	58
43	Origin of dynamical heterogeneities in calcium aluminosilicate liquids. Journal of Chemical Physics, 2010, 132, 194501.	1.2	57
44	Modeling of Rigidity Percolation and Incipient Plasticity in Germanium?Selenium Glasses. Journal of the American Ceramic Society, 2007, 90, 192-198.	1.9	56
45	Impact of fragility on enthalpy relaxation in glass. Physical Review E, 2008, 78, 021502.	0.8	56
46	Intrachannel nonlinear penalties in dispersion-managed transmission systems. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 626-631.	1.9	55
47	Nonmonotonic Evolution of Density Fluctuations during Glass Relaxation. Physical Review Letters, 2009, 102, 155506.	2.9	54
48	Elastic and micromechanical properties of isostatically compressed soda–lime–borate glasses. Journal of Non-Crystalline Solids, 2013, 364, 44-52.	1.5	54
49	A model for phosphate glass topology considering the modifying ion sub-network. Journal of Chemical Physics, 2014, 140, .	1.2	54
50	Defect-mediated self-diffusion in calcium aluminosilicate glasses: A molecular modeling study. Journal of Non-Crystalline Solids, 2011, 357, 1780-1786.	1.5	53
51	Indentation deformation mechanism of isostatically compressed mixed alkali aluminosilicate glasses. Journal of Non-Crystalline Solids, 2015, 426, 175-183.	1.5	53
52	Mixed alkaline earth effect in the compressibility of aluminosilicate glasses. Journal of Chemical Physics, 2014, 140, 054511.	1.2	52
53	Elasticity of ion stuffing in chemically strengthened glass. Journal of Non-Crystalline Solids, 2012, 358, 1569-1574.	1.5	51
54	Unique effects of thermal and pressure histories on glass hardness: Structural and topological origin. Journal of Chemical Physics, 2015, 143, 164505.	1.2	51

#	Article	IF	CITATIONS
55	Advancing the Mechanical Performance of Glasses: Perspectives and Challenges. Advanced Materials, 2022, 34, e2109029.	11.1	50
56	Advancing glasses through fundamental research. Journal of the European Ceramic Society, 2009, 29, 1227-1234.	2.8	49
57	Unified approach for determining the enthalpic fictive temperature of glasses with arbitrary thermal history. Journal of Non-Crystalline Solids, 2011, 357, 3230-3236.	1.5	49
58	Sodium diffusion in boroaluminosilicate glasses. Journal of Non-Crystalline Solids, 2011, 357, 3744-3750.	1.5	49
59	Enabling Computational Design of ZIFs Using ReaxFF. Journal of Physical Chemistry B, 2018, 122, 9616-9624.	1.2	49
60	Topological Model for the Viscosity of Multicomponent Glassâ€Forming Liquids. International Journal of Applied Glass Science, 2013, 4, 408-413.	1.0	48
61	Multiscale modeling of arsenic selenide glass. Journal of Non-Crystalline Solids, 2007, 353, 1226-1231.	1.5	47
62	Composition-Structure-Property Relations of Compressed Borosilicate Glasses. Physical Review Applied, 2014, 2, .	1.5	47
63	Structure-topology-property correlations of sodium phosphosilicate glasses. Journal of Chemical Physics, 2015, 143, 064510.	1.2	47
64	Nanoductility in silicate glasses is driven by topological heterogeneity. Physical Review B, 2016, 93, .	1.1	47
65	Thermometer Effect: Origin of the Mixed Alkali Effect in Glass Relaxation. Physical Review Letters, 2017, 119, 095501.	2.9	47
66	Hardness and incipient plasticity in silicate glasses: Origin of the mixed modifier effect. Applied Physics Letters, 2014, 104, .	1.5	46
67	Emerging Role of Non-crystalline Electrolytes in Solid-State Battery Research. Frontiers in Energy Research, 2020, 8, .	1.2	46
68	Reconciling calorimetric and kinetic fragilities of glass-forming liquids. Journal of Non-Crystalline Solids, 2017, 456, 95-100.	1.5	45
69	Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior. Journal of Chemical Physics, 2009, 131, 164505.	1.2	44
70	Communication: Resolving the vibrational and configurational contributions to thermal expansion in isobaric glass-forming systems. Journal of Chemical Physics, 2010, 133, 091102.	1.2	44
71	Unified physics of stretched exponential relaxation and Weibull fracture statistics. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 6121-6127.	1.2	44
72	Statistics of modifier distributions in mixed network glasses. Journal of Chemical Physics, 2013, 138, 12A522.	1.2	43

#	Article	IF	CITATIONS
73	Structure of MgO/CaO sodium aluminosilicate glasses: Raman spectroscopy study. Journal of Non-Crystalline Solids, 2017, 470, 145-151.	1.5	43
74	Density of topological constraints as a metric for predicting glass hardness. Applied Physics Letters, 2017, 111, .	1.5	43
75	Wet chemical synthesis of apatite-based waste forms – A novel room temperature method for the immobilization of radioactive iodine. Journal of Materials Chemistry A, 2017, 5, 14331-14342.	5.2	43
76	Enthalpy landscapes and the glass transition. Scientific Modeling and Simulation SMNS, 2008, 15, 241-281.	0.8	41
77	Ionic diffusion and the topological origin of fragility in silicate glasses. Journal of Chemical Physics, 2009, 131, 244514.	1.2	41
78	Impact of ZnO on the structure and properties of sodium aluminosilicate glasses: Comparison with alkaline earth oxides. Journal of Non-Crystalline Solids, 2013, 381, 58-64.	1.5	41
79	On the Prony series representation of stretched exponential relaxation. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 75-87.	1.2	41
80	Compositional Dependence of Solubility/Retention of Molybdenum Oxides in Aluminoborosilicate-Based Model Nuclear Waste Glasses. Journal of Physical Chemistry B, 2018, 122, 1714-1729.	1.2	41
81	A Simplified Eigenvector-Following Technique for Locating Transition Points in an Energy Landscape. Journal of Physical Chemistry A, 2005, 109, 9578-9583.	1.1	40
82	Impact of network topology on cationic diffusion and hardness of borate glass surfaces. Journal of Chemical Physics, 2010, 133, 154509.	1.2	40
83	Mutual diffusivity, network dilation, and salt bath poisoning effects in ion-exchanged glass. Journal of Non-Crystalline Solids, 2013, 363, 199-204.	1.5	40
84	Principles of Pyrex® glass chemistry: structure–property relationships. Applied Physics A: Materials Science and Processing, 2014, 116, 491-504.	1.1	39
85	On the origin of the mixed alkali effect on indentation in silicate glasses. Journal of Non-Crystalline Solids, 2014, 406, 22-26.	1.5	39
86	Crack initiation in metallic glasses under nanoindentation. Acta Materialia, 2016, 115, 413-422.	3.8	39
87	Monte Carlo method for computing density of states and quench probability of potential energy and enthalpy landscapes. Journal of Chemical Physics, 2007, 126, 194103.	1.2	38
88	Split-Step Eigenvector-Following Technique for Exploring Enthalpy Landscapes at Absolute Zero. Journal of Physical Chemistry B, 2006, 110, 5005-5011.	1.2	37
89	Ultraâ€6mooth and Ultraâ€6trong Ionâ€Exchanged Glass as Substrates for Organic Electronics. Advanced Functional Materials, 2013, 23, 3233-3238.	7.8	37
90	Microscopic Origins of Compositional Trends in Aluminosilicate Glass Properties. Journal of the American Ceramic Society, 2013, 96, 1436-1443.	1.9	37

#	Article	IF	CITATIONS
91	Model interaction potentials for selenium fromab initiomolecular simulations. Physical Review B, 2005, 71, .	1.1	36
92	Divergent dynamics and the Kauzmann temperature in glass forming systems. Scientific Reports, 2014, 4, 5160.	1.6	36
93	Ion exchange strengthening and thermal expansion of glasses: Common origin and critical role of network connectivity. Journal of Non-Crystalline Solids, 2017, 455, 70-74.	1.5	36
94	Statistical Mechanical Modeling of Borate Glass Structure and Topology: Prediction of Superstructural Units and Glass Transition Temperature. Journal of Physical Chemistry B, 2019, 123, 1206-1213.	1.2	36
95	The configurational entropy of glass. Journal of Non-Crystalline Solids, 2009, 355, 595-599.	1.5	35
96	Fragility and configurational heat capacity of calcium aluminosilicate glass-forming liquids. Journal of Non-Crystalline Solids, 2017, 461, 24-34.	1.5	35
97	Functional GPCR Microarrays. Journal of the American Chemical Society, 2005, 127, 15350-15351.	6.6	34
98	Forbidden glasses and the failure of fictive temperature. Journal of Non-Crystalline Solids, 2009, 355, 676-680.	1.5	34
99	Fragility and basic process energies in vitrifying systems. Scientific Reports, 2015, 5, 8314.	1.6	34
100	Relaxation of enthalpy fluctuations during sub-Tg annealing of glassy selenium. Journal of Chemical Physics, 2013, 138, 244504.	1.2	33
101	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi>Al</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow> <td>l:mnչ2ıb><mml:< td=""><td>nml;mn>mtext>â^'</td></mml:<></td>	l:mnչ2ıb> <mml:< td=""><td>nml;mn>mtext>â^'</td></mml:<>	nml;mn>mtext>â^'
102	Topology of alkali phosphate glass networks. Journal of Non-Crystalline Solids, 2013, 361, 57-62.	1.5	32
103	Viscous flow of medieval cathedral glass. Journal of the American Ceramic Society, 2018, 101, 5-11.	1.9	32
104	Through a Glass, Darkly: Dispelling Three Common Misconceptions in Glass Science. International Journal of Applied Glass Science, 2011, 2, 245-261.	1.0	31
105	Hardness of silicate glasses: Atomic-scale origin of the mixed modifier effect. Journal of Non-Crystalline Solids, 2018, 489, 16-21.	1.5	31
106	Topological Origins of the Mixed Alkali Effect in Glass. Journal of Physical Chemistry B, 2019, 123, 7482-7489.	1.2	31
107	Model-driven design of bioactive glasses: from molecular dynamics through machine learning. International Materials Reviews, 2020, 65, 297-321.	9.4	31
108	Two factors governing fragility: Stretching exponent and configurational entropy. Physical Review E, 2008, 78, 062501.	0.8	30

#	Article	IF	CITATIONS
109	Influence of aluminum speciation on the stability of aluminosilicate glasses against crystallization. Applied Physics Letters, 2012, 101, 041906.	1.5	30
110	Crack nucleation criterion and its application to impact indentation in glasses. Scientific Reports, 2016, 6, 23720.	1.6	29
111	Prediction of the Glass Transition Temperatures of Zeolitic Imidazolate Glasses through Topological Constraint Theory. Journal of Physical Chemistry Letters, 2018, 9, 6985-6990.	2.1	29
112	An upper limit to kinetic fragility in glass-forming liquids. Journal of Chemical Physics, 2011, 134, 044522.	1.2	28
113	Characterizing the Fundamental Adhesion of Polyimide Monomers on Crystalline and Glassy Silica Surfaces: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2016, 120, 23631-23639.	1.5	28
114	Machine Learning for Glass Modeling. Springer Handbooks, 2019, , 1157-1192.	0.3	28
115	Computing the Viscosity of Supercooled Liquids: Markov Network Model. PLoS ONE, 2011, 6, e17909.	1.1	28
116	Elastic interpretation of the glass transition in aluminosilicate liquids. Physical Review B, 2012, 85, .	1.1	27
117	Computational approaches for investigating interfacial adhesion phenomena of polyimide on silica glass. Scientific Reports, 2017, 7, 10475.	1.6	27
118	Effects of water on the mechanical properties of silica glass using molecular dynamics. Acta Materialia, 2019, 178, 36-44.	3.8	27
119	Hardness of Oxynitride Glasses: Topological Origin. Journal of Physical Chemistry B, 2015, 119, 4109-4115.	1.2	26
120	Atomic picture of structural relaxation in silicate glasses. Applied Physics Letters, 2019, 114, .	1.5	26
121	Ultra-thin glass as a substrate for flexible photonics. Optical Materials, 2020, 106, 109994.	1.7	26
122	Effect of fragility on relaxation of density fluctuations in glass. Journal of Non-Crystalline Solids, 2011, 357, 3520-3523.	1.5	25
123	Molecular dynamics simulations of ion-exchanged glass. Journal of Non-Crystalline Solids, 2014, 403, 107-112.	1.5	25
124	Linking Equilibrium and Nonequilibrium Dynamics in Glass-Forming Systems. Journal of Physical Chemistry B, 2016, 120, 3226-3231.	1.2	25
125	Topological constraint model for the elasticity of glass-forming systems. Journal of Non-Crystalline Solids: X, 2019, 2, 100019.	0.5	25
126	Relating structural disorder and melting in complex mixed ligand zeolitic imidazolate framework glasses. Dalton Transactions, 2020, 49, 850-857.	1.6	25

#	Article	IF	CITATIONS
127	Structure-property relations in calcium aluminate glasses containing different divalent cations and SiO 2. Journal of Non-Crystalline Solids, 2015, 427, 160-165.	1.5	24
128	Universal behavior of changes in elastic moduli of hot compressed oxide glasses. Chemical Physics Letters, 2016, 651, 88-91.	1.2	24
129	Glass-activated regeneration of volumetric muscle loss. Acta Biomaterialia, 2020, 103, 306-317.	4.1	24
130	Maxwell relaxation time for nonexponential αâ€relaxation phenomena in glassy systems. Journal of the American Ceramic Society, 2020, 103, 3590-3599.	1.9	24
131	Glass-forming ability of soda lime borate liquids. Journal of Non-Crystalline Solids, 2012, 358, 658-665.	1.5	23
132	Structural origin of intrinsic ductility in binary aluminosilicate glasses. Journal of Non-Crystalline Solids, 2016, 452, 297-306.	1.5	23
133	Hybrid Monte Carlo technique for modeling of crystal nucleation and application to lithium disilicate glass-ceramics. Computational Materials Science, 2018, 149, 202-207.	1.4	23
134	Why does B ₂ O ₃ suppress nepheline (NaAlSiO ₄) crystallization in sodium aluminosilicate glasses?. Physical Chemistry Chemical Physics, 2020, 22, 8679-8698.	1.3	23
135	Minimalist landscape model of glass relaxation. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 3446-3459.	1.2	22
136	Pressure-Induced Changes in Interdiffusivity and Compressive Stress in Chemically Strengthened Glass. ACS Applied Materials & Interfaces, 2014, 6, 10436-10444.	4.0	22
137	Effect of water on topological constraints in silica glass. Scripta Materialia, 2019, 160, 48-52.	2.6	22
138	Monte Carlo simulation ofSexTe1â^'xglass structure withab initiopotentials. Physical Review B, 2005, 72, .	1.1	21
139	Photoelastic response of alkaline earth aluminosilicate glasses. Optics Letters, 2012, 37, 293.	1.7	21
140	Time and humidity dependence of indentation cracking in aluminosilicate glasses. Journal of Non-Crystalline Solids, 2018, 491, 64-70.	1.5	21
141	Statistical mechanical model of bonding in mixed modifier glasses. Journal of the American Ceramic Society, 2018, 101, 1906-1915.	1.9	21
142	Topological understanding of the mixed alkaline earth effect in glass. Journal of Non-Crystalline Solids, 2020, 527, 119696.	1.5	21
143	Influence of acid leaching surface treatment on indentation cracking of soda lime silicate glass. Journal of Non-Crystalline Solids, 2020, 543, 120144.	1.5	21
144	Effect of nanoscale phase separation on the fracture behavior of glasses: Toward tough, yet transparent glasses. Physical Review Materials, 2018, 2, .	0.9	21

#	Article	IF	CITATIONS
145	Comment on: "On the reality of residual entropies of glasses and disordered crystals―[J. Chem. Phys. 128, 154510 (2008)]. Journal of Chemical Physics, 2008, 129, 067101.	1.2	20
146	Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass. Frontiers in Materials, 2016, 3, .	1.2	20
147	Competing Indentation Deformation Mechanisms in Glass Using Different Strengthening Methods. Frontiers in Materials, 2016, 3, .	1.2	20
148	Crucial effect of angular flexibility on the fracture toughness and nano-ductility of aluminosilicate glasses. Journal of Non-Crystalline Solids, 2016, 454, 46-51.	1.5	20
149	Variability in the relaxation behavior of glass: Impact of thermal history fluctuations and fragility. Journal of Chemical Physics, 2017, 146, 074504.	1.2	20
150	Dataâ€driven glass/ceramic science research: Insights from the glass and ceramic and data science/informatics communities. Journal of the American Ceramic Society, 2019, 102, 6385-6406.	1.9	20
151	Examining the role of nucleating agents within glass-ceramic systems. Journal of Non-Crystalline Solids, 2022, 591, 121714.	1.5	20
152	Fiber design considerations for 40 Gb/s systems. Journal of Lightwave Technology, 2002, 20, 2290-2305.	2.7	19
153	Liquidus surface of MgO–CaO–Al2O3–SiO2 glass-forming systems. Journal of Non-Crystalline Solids, 2013, 363, 39-45.	1.5	19
154	Temperature dependence of crystal nucleation in BaO·2SiO2 and 5BaO·8SiO2 glasses using differential thermal analysis. Journal of Non-Crystalline Solids, 2017, 459, 45-50.	1.5	19
155	Implicit glass model for simulation of crystal nucleation for glass-ceramics. Npj Computational Materials, 2018, 4, .	3.5	19
156	Relative abundance of subsurface hydroxyl and molecular water species in silicate and aluminosilicate glasses. Journal of Non-Crystalline Solids, 2019, 510, 179-185.	1.5	19
157	Evaluation of classical interatomic potentials for molecular dynamics simulations of borosilicate glasses. Journal of Non-Crystalline Solids, 2020, 528, 119736.	1.5	19
158	Energy landscape modeling of crystal nucleation. Acta Materialia, 2021, 217, 117163.	3.8	19
159	Cation Diffusivity and the Mixed Network Former Effect in Borosilicate Glasses. Journal of Physical Chemistry B, 2015, 119, 7106-7115.	1.2	18
160	Effect of Nanoscale Roughness on Adhesion between Glassy Silica and Polyimides: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2017, 121, 24648-24656.	1.5	18
161	Hybrid machine learning/physics-based approach for predicting oxide glass-forming ability. Acta Materialia, 2022, 222, 117432.	3.8	18
162	On the frequency correction in temperature-modulated differential scanning calorimetry of the glass transition. Journal of Non-Crystalline Solids, 2012, 358, 1710-1715.	1.5	17

#	Article	IF	CITATIONS
163	Adhesion of Organic Molecules on Silica Surfaces: A Density Functional Theory Study. Journal of Physical Chemistry C, 2017, 121, 392-401.	1.5	17
164	Topological Origin of the Network Dilation Anomaly in Ion-Exchanged Glasses. Physical Review Applied, 2017, 8, .	1.5	17
165	Predicting Q-Speciation in Binary Phosphate Glasses Using Statistical Mechanics. Journal of Physical Chemistry B, 2018, 122, 7609-7615.	1.2	17
166	Topological pruning enables ultra-low Rayleigh scattering in pressure-quenched silica glass. Npj Computational Materials, 2020, 6, .	3.5	17
167	Modifier constraints in alkali ultraphosphate glasses. Journal of Non-Crystalline Solids, 2014, 405, 12-15.	1.5	16
168	Simulation of glass network evolution during chemical strengthening: Resolution of the subsurface compression maximum anomaly. Journal of Non-Crystalline Solids, 2019, 522, 119457.	1.5	16
169	Modifier clustering and avoidance principle in borosilicate glasses: A molecular dynamics study. Journal of Chemical Physics, 2019, 150, 044502.	1.2	16
170	Tailoring Cluster Configurations Enables Tunable Broad-Band Luminescence in Glass. Chemistry of Materials, 2020, 32, 8653-8661.	3.2	16
171	Predictive model for the composition dependence of glassy dynamics. Journal of the American Ceramic Society, 2018, 101, 1169-1179.	1.9	16
172	Are the dynamics of a glass embedded in its elastic properties?. Journal of Chemical Physics, 2013, 138, 12A501.	1.2	15
173	Plasticity of borosilicate glasses under uniaxial tension. Journal of the American Ceramic Society, 2020, 103, 4295-4303.	1.9	15
174	Indentation and abrasion in glass products: Lessons learned and yet to be learned. International Journal of Applied Glass Science, 2022, 13, 308-337.	1.0	15
175	Structural relaxation in annealed hyperquenched basaltic glasses: Insights from calorimetry. Journal of Non-Crystalline Solids, 2012, 358, 1356-1361.	1.5	14
176	Compositional control of the photoelastic response of silicate glasses. Optical Materials, 2013, 35, 2435-2439.	1.7	14
177	Anomalous Crystallization as a Signature of the Fragile-to-Strong Transition in Metallic Glass-Forming Liquids. Journal of Physical Chemistry B, 2014, 118, 10258-10265.	1.2	14
178	High-speed camera study of Stage III crack propagation in chemically strengthened glass. Applied Physics A: Materials Science and Processing, 2014, 116, 471-477.	1.1	14
179	RelaxPy: Python code for modeling of glass relaxation behavior. SoftwareX, 2018, 7, 255-258.	1.2	14
180	Statistical mechanics of topological fluctuations in glass-forming liquids. Physica A: Statistical Mechanics and Its Applications, 2018, 510, 787-801.	1.2	14

#	Article	IF	CITATIONS
181	Analytical model of the network topology and rigidity of calcium aluminosilicate glasses. Journal of the American Ceramic Society, 2021, 104, 3947-3962.	1.9	14
182	Topological hardening through oxygen triclusters in calcium aluminosilicate glasses. Journal of the American Ceramic Society, 2021, 104, 6183-6193.	1.9	14
183	Boron anomaly in the thermal conductivity of lithium borate glasses. Physical Review Materials, 2019, 3, .	0.9	14
184	Beyond the Average: Spatial and Temporal Fluctuations in Oxide Glass-Forming Systems. Chemical Reviews, 2023, 123, 1774-1840.	23.0	14
185	Mapping the potential energy landscapes of selenium clusters. Journal of Non-Crystalline Solids, 2007, 353, 1268-1273.	1.5	13
186	Non-equilibrium entropy of glasses formed by continuous cooling. Journal of Non-Crystalline Solids, 2009, 355, 600-606.	1.5	13
187	The Thermodynamic Significance of Order Parameters During Glass Relaxation. Journal of the American Ceramic Society, 2010, 93, 1026-1031.	1.9	13
188	Atomic structure of hot compressed borosilicate glasses. Journal of the American Ceramic Society, 2020, 103, 6215-6225.	1.9	13
189	Atomic-scale modeling of crack branching in oxide glass. Acta Materialia, 2021, 216, 117098.	3.8	13
190	Distinguishability of particles in glass-forming systems. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 5392-5403.	1.2	12
191	Statistical Mechanical Model of the Self-Organized Intermediate Phase in Glass-Forming Systems With Adaptable Network Topologies. Frontiers in Materials, 2019, 6, .	1.2	12
192	Topological model of alkali germanate glasses and exploration of the germanate anomaly. Journal of the American Ceramic Society, 2020, 103, 4224-4233.	1.9	12
193	Macroscopic Model of Phospholipid Vesicle Spreading and Rupture. Langmuir, 2004, 20, 5724-5731.	1.6	11
194	Potential energy landscapes of elemental and heterogeneous chalcogen clusters. Physical Review A, 2006, 73, .	1.0	11
195	Breakdown of the fractional Stokes–Einstein relation in silicate liquids. Journal of Non-Crystalline Solids, 2011, 357, 3924-3927.	1.5	11
196	Non-conservation of the total alkali concentration in ion-exchanged glass. Journal of Non-Crystalline Solids, 2014, 387, 71-75.	1.5	11
197	Modeling the thermal poling of glasses using molecular dynamics. Part 1: Effects on glass structure. Journal of Non-Crystalline Solids, 2017, 461, 98-103.	1.5	11
198	Predicting Composition-Structure Relations in Alkali Borosilicate Classes Using Statistical Mechanics. Frontiers in Materials, 2019, 6, .	1.2	11

#	Article	IF	CITATIONS
199	Understanding thermal expansion of pressurized silica glass using topological pruning of ring structures. Journal of the American Ceramic Society, 2021, 104, 114-127.	1.9	11
200	Achieving long time scale simulations of glass-forming systems. Computational and Theoretical Chemistry, 2012, 987, 122-133.	1.1	10
201	Bioactive Glass Innovations Through Academiaâ€Industry Collaboration. International Journal of Applied Glass Science, 2016, 7, 139-146.	1.0	10
202	Accessing Forbidden Glass Regimes through High-Pressure Sub-Tg Annealing. Scientific Reports, 2017, 7, 46631.	1.6	10
203	Modeling of delayed elasticity in glass. Journal of Non-Crystalline Solids, 2018, 500, 432-442.	1.5	10
204	Structure, properties, and fabrication of calcium aluminateâ€based glasses. International Journal of Applied Class Science, 2019, 10, 488-501.	1.0	10
205	Determining the liquidus viscosity of glassâ€forming liquids through differential scanning calorimetry. Journal of the American Ceramic Society, 2020, 103, 6070-6074.	1.9	10
206	Thermal expansion of silicate glassâ€forming systems at high temperatures from topological pruning of ring structures. Journal of the American Ceramic Society, 2020, 103, 4256-4265.	1.9	10
207	Geometric analysis of the calorimetric glass transition and fragility using constant cooling rate cycles. International Journal of Applied Glass Science, 2021, 12, 348-357.	1.0	10
208	Effects of acid leaching treatment of sodaâ€lime silicate glass on crack initiation and fracture. Journal of the American Ceramic Society, 2021, 104, 4550-4558.	1.9	10
209	Ab initio modeling of volume–temperature curves for glassforming systems. Journal of Non-Crystalline Solids, 2007, 353, 1274-1278.	1.5	9
210	Response to "Comment on â€~Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems'―[J. Chem. Phys. 134, 147101 (2011)]. Journal of Chemical Physics, 2011, 134, 147	1 02 .	9
211	Sodium tracer diffusion in sodium boroaluminosilicate glasses. Journal of Non-Crystalline Solids, 2012, 358, 1430-1437.	1.5	9
212	Quantifying the internal stress in over-constrained glasses by molecular dynamics simulations. Journal of Non-Crystalline Solids: X, 2019, 1, 100013.	0.5	9
213	Mixed Alkali Effect in Silicate Glass Structure: Viewpoint of ²⁹ Si Nuclear Magnetic Resonance and Statistical Mechanics. Journal of Physical Chemistry B, 2020, 124, 10292-10299.	1.2	9
214	Thermal conductivity of densified borosilicate glasses. Journal of Non-Crystalline Solids, 2021, 557, 120644.	1.5	9
215	Fragility and temperature dependence of stretched exponential relaxation in glassâ€forming systems. Journal of the American Ceramic Society, 2021, 104, 4559-4567	1.9	9
216	Explorer.py: Mapping the energy landscapes of complex materials. SoftwareX, 2021, 14, 100683.	1.2	9

#	Article	IF	CITATIONS
217	Unusual thermal response of tellurium near-infrared luminescence in phosphate laser glass. Optics Letters, 2018, 43, 4823.	1.7	9
218	High oordinated alumina and oxygen triclusters in modified aluminosilicate glasses. International Journal of Applied Glass Science, 2022, 13, 388-401.	1.0	9
219	Modeling of selenium telluride glass. Physica Status Solidi (B): Basic Research, 2005, 242, R46-R48.	0.7	8
220	Multiscale Modeling of GeSe2 Glass Structure. Journal of the American Ceramic Society, 2006, 89, 060427083300079-???.	1.9	8
221	Liquidus Temperature of <scp>S</scp> r <scp>O</scp> â€ <scp>A</scp> l ₂ <scp>O</scp> ₃ â€ <scp>S</scp> i <scp Glassâ€Forming Compositions. International Journal of Applied Glass Science, 2013, 4, 225-230.</scp 	> Ок ¢вср>	<suab>2</suab>
222	Compressive stress profiles of chemically strengthened glass after exposure to high voltage electric fields. Journal of Non-Crystalline Solids, 2014, 394-395, 6-8.	1.5	8
223	Methods for Measurement and Statistical Analysis of the Frangibility of Strengthened Glass. Frontiers in Materials, 2015, 2, .	1.2	8
224	Effect of divalent cations and SiO2 on the crystallization behavior of calcium aluminate glasses. Journal of Non-Crystalline Solids, 2015, 413, 20-23.	1.5	8
225	Mechanical and Compositional Design of High-Strength Corning Gorilla® Glass. , 2018, , 1-23.		8
226	Understanding the molar volume of alkali-alkaline earth-silicate glasses via Voronoi polyhedra analysis. Scripta Materialia, 2019, 166, 1-5.	2.6	8
227	Piezoelectric glassâ€ceramics: Crystal chemistry, orientation mechanisms, and emerging applications. Journal of the American Ceramic Society, 2021, 104, 1915-1944.	1.9	8
228	Chemical durability of borosilicate pharmaceutical glasses: Mixed alkaline earth effect with varying [MgO]/[CaO] ratio. Journal of the American Ceramic Society, 2021, 104, 3973-3981.	1.9	8
229	Coupling of diffusion and chemical stress: The case of ion exchange in glass. Journal of the American Ceramic Society, 2021, 104, 5599-5613.	1.9	8
230	Combining high hardness and crack resistance in mixed network glasses through high-temperature densification. Physical Review Materials, 2018, 2, .	0.9	8
231	Relationship between viscous dynamics and the configurational thermal expansion coefficient of glass-forming liquids. Journal of Non-Crystalline Solids, 2012, 358, 648-651.	1.5	7
232	Gordon Scott Fulcher: Renaissance Man of Glass Science. Frontiers in Materials, 2014, 1, .	1.2	7
233	Chemical Strengthening of Alkaliâ€Free Glass via Pressure Vessel Ion Exchange. International Journal of Applied Glass Science, 2016, 7, 446-451.	1.0	7
234	Modified elastic model for viscosity in glass-forming systems. Physical Review B, 2017, 96, .	1.1	7

#	Article	IF	CITATIONS
235	Topological constraint model of alkali tellurite glasses. Journal of Non-Crystalline Solids, 2018, 502, 172-175.	1.5	7
236	KineticPy: A tool to calculate long-time kinetics in energy landscapes with broken ergodicity. SoftwareX, 2020, 11, 100393.	1.2	7
237	Predicting Ionic Diffusion in Glass from Its Relaxation Behavior. Journal of Physical Chemistry B, 2020, 124, 1099-1103.	1.2	7
238	Atomistic Mechanisms of Thermal Transformation in a Zr-Metal Organic Framework, MIL-140C. Journal of Physical Chemistry Letters, 2021, 12, 177-184.	2.1	7
239	Advanced modulation formats for fiber optic communication systems. Scientific Modeling and Simulation SMNS, 2008, 15, 283-312.	0.8	6
240	Quantitative prediction of the structure and properties of Li ₂ O–Ta ₂ O ₅ –SiO ₂ glasses via phase diagram approach. Journal of the American Ceramic Society, 2019, 102, 185-194.	1.9	6
241	Predicting Cation Interactions in Alkali Aluminoborate Glasses using Statistical Mechanics. Journal of Non-Crystalline Solids, 2020, 544, 120099.	1.5	6
242	Dilatometric fragility and prediction of the viscosity curve of glassâ€ f orming liquids. Journal of the American Ceramic Society, 2020, 103, 4248-4255.	1.9	6
243	Decoupling of indentation modulus and hardness in silicate glasses: Evidence of a shear- to densification-dominated transition. Journal of Non-Crystalline Solids, 2021, 553, 120518.	1.5	6
244	Modeling the relaxation and crystallization kinetics of glass without fictive temperature: Toy landscape approach. Journal of the American Ceramic Society, 2022, 105, 245-256.	1.9	6
245	Mixed metal node effect in zeolitic imidazolate frameworks. RSC Advances, 2022, 12, 10815-10824.	1.7	6
246	Lateralâ€pushing induced surface liftâ€up during nanoindentation of silicate glass. Journal of the American Ceramic Society, 2022, 105, 2625-2633.	1.9	6
247	Advanced tools for unveiling nucleation in nanostructured glass-ceramics. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 411-439.	6.8	6
248	Enhanced stimulated Brillouin scattering threshold through phase control of multitone phase modulation. Optical Engineering, 2010, 49, 100501.	0.5	5
249	Dynamic fracturing of strengthened glass under biaxial tensile loading. Journal of Non-Crystalline Solids, 2014, 405, 153-158.	1.5	5
250	Photoelastic response of permanently densified oxide glasses. Optical Materials, 2017, 67, 155-161.	1.7	5
251	Statistical Mechanical Model of Topological Fluctuations and the Intermediate Phase in Binary Phosphate Glasses. Journal of Physical Chemistry B, 2019, 123, 7640-7648.	1.2	5
252	Crack initiation in an indented metallic glass with embedded nanoparticle. Journal of Applied Physics, 2019, 125, .	1.1	5

#	Article	IF	CITATIONS
253	Topological constraint model of high lithium content borate glasses. Journal of Non-Crystalline Solids: X, 2019, 3, 100028.	0.5	5
254	Topological Control of Water Reactivity on Glass Surfaces: Evidence of a Chemically Stable Intermediate Phase. Journal of Physical Chemistry Letters, 2019, 10, 3955-3960.	2.1	5
255	Liquid fragility determination of oxide glassâ€formers using temperatureâ€modulated DSC. International Journal of Applied Glass Science, 2019, 10, 321-329.	1.0	5
256	Bioactive Glasses for Cancer Therapy. , 2019, , 273-312.		5
257	Statistical description of the thermodynamics of glass-forming liquids. Physica A: Statistical Mechanics and Its Applications, 2020, 559, 125059.	1.2	5
258	Aluminosilicate glasses for zinc selenide tunable fiber laser cladding. Journal of the American Ceramic Society, 2021, 104, 691-696.	1.9	5
259	Atomicâ€scale mechanisms of densification in coldâ€compressed borosilicate glasses. Journal of the American Ceramic Society, 2021, 104, 2506-2520.	1.9	5
260	Comment on "Glass Transition, Crystallization of Glass-Forming Melts, and Entropy―Entropy 2018, 20, 103 Entropy, 2018, 20, 703.	1.1	4
261	Synthesis and characterization of K2O-ZnO-GeO2-SiO2 optical glasses. Journal of Non-Crystalline Solids, 2019, 503-504, 308-312.	1.5	4
262	Signatures of criticality in mining accidents and recurrent neural network forecasting model. Physica A: Statistical Mechanics and Its Applications, 2020, 537, 122656.	1.2	4
263	Viscosity of silica and doped silica melts: evidence for a crossover temperature. Journal of the American Ceramic Society, 0, , .	1.9	4
264	Mechanical and Compositional Design of High-Strength Corning Gorilla® Glass. , 2020, , 1997-2019.		4
265	Statistical mechanical model for the formation of octahedral silicon in phosphosilicate glasses. Journal of the American Ceramic Society, 2022, 105, 1031-1038.	1.9	4
266	StatMechGlass: Python based software for composition–structure prediction in oxide glasses using statistical mechanics. SoftwareX, 2022, 17, 100913.	1.2	4
267	Experimental analysis and machine learning modeling of optical properties of lithium disilicate glass–ceramics comprising lithium tantalate as a secondary phase. International Journal of Applied Glass Science, 0, , .	1.0	4
268	Experimental analysis and modeling of the Knoop hardness of lithium disilicate glass-ceramics containing lithium tantalate as a secondary phase. Journal of Non-Crystalline Solids, 2022, 585, 121540.	1.5	4
269	Impact of parametric mixing of ASE and signal on high-power festoon systems with random dispersion variation. IEEE Photonics Technology Letters, 2001, 13, 212-214.	1.3	3
270	Impact of Modulation Format and Filtering on the Calculation of Amplified Spontaneous Emission Noise Penalty. Journal of Optical Communications, 2004, 25, .	4.0	3

#	Article	IF	CITATIONS
271	Response to "Comment on â€~A model for phosphate glass topology considering the modifying ion sub-networkâ€â€™ [J. Chem. Phys.142, 107103 (2015)]. Journal of Chemical Physics, 2015, 142, 107104.	1.2	3
272	Confocal depth-resolved micro-X-ray absorption spectroscopy study of chemically strengthened boroaluminosilicate glasses. RSC Advances, 2016, 6, 24060-24065.	1.7	3
273	Modeling the thermal poling of glasses using molecular dynamics. Part 2: Effects on elastic properties. Journal of Non-Crystalline Solids, 2017, 468, 17-26.	1.5	3
274	Parametric study of temperature-modulated differential scanning calorimetry for high-temperature oxide glasses with varying fragility. Journal of Non-Crystalline Solids, 2018, 484, 84-94.	1.5	3
275	Topological model for Bi2O3-NaPO3 glasses. I. Prediction of glass transition temperature and fragility. Journal of Non-Crystalline Solids, 2019, 521, 119534.	1.5	3
276	Glass compositions and structures. , 2019, , 101-164.		3
277	Glass surfaces. , 2019, , 595-606.		3
278	Microstructural evolution of droplet phase separation in calcium aluminosilicate glasses. Journal of the American Ceramic Society, 2022, 105, 193-206.	1.9	3
279	Enthalpy landscapes and the glass transition. Lecture Notes in Computational Science and Engineering, 2008, , 241-281.	0.1	3
280	Response to comment on "The glassy state of matter: Its definition and ultimate fate― Journal of Non-Crystalline Solids, 2018, 502, 251-252.	1.5	2
281	Fundamentals of the glassy state. , 2019, , 19-35.		2
282	Fundamentals of Organic-Glass Adhesion. , 2019, , 1-41.		2
283	Volume relaxation in a borosilicate glass hot compressed by three different methods. Journal of the American Ceramic Society, 2021, 104, 816-823.	1.9	2
284	Theory of structural relaxation in glass from the thermodynamics of irreversible processes. Physical Review E, 2021, 103, 062606.	0.8	2
285	Understanding cracking behavior of glass from its response to hydrostatic compression. Physical Review Materials, 2020, 4, .	0.9	2
286	Advanced modulation formats for fiber optic communication systems. Lecture Notes in Computational Science and Engineering, 2008, , 283-312.	0.1	2
287	Effect of pressurization on the fracture toughness of borosilicate glasses. Journal of the American Ceramic Society, 0, , .	1.9	2
288	Impact of a temperatureâ€dependent stretching exponent on glass relaxation. International Journal of Applied Glass Science, 2022, 13, 338-346.	1.0	2

#	Article	IF	CITATIONS
289	High toughness transparent glassâ€ceramics with petalite and βâ€spodumene solid solution as two major crystal phases. Journal of the American Ceramic Society, 2022, 105, 6116-6127.	1.9	2
290	Statistical mechanical modeling of glass-forming systems: A practical review considering an example calcium silicate system. Current Opinion in Solid State and Materials Science, 2022, 26, 101018.	5.6	2
291	Glass transition range behavior. , 2019, , 293-382.		1
292	Elastic properties and hardness of glass. , 2019, , 187-214.		1
293	Strength and toughness. , 2019, , 487-535.		1
294	Emerging applications of glass. , 2019, , 687-701.		1
295	Perspectives on the scientific career and impact of Prabhat K. Gupta. Journal of Non-Crystalline Solids: X, 2019, 1, 100011.	0.5	1
296	The relativistic glass transition: A thought experiment. Journal of Non-Crystalline Solids: X, 2019, 2, 100018.	0.5	1
297	Thermodynamics vs. Kinetics. , 2021, , 1-17.		1
298	Nonequilibrium Viscosity and the Glass Transition. , 2021, , 295-314.		1
299	Pressure effects on shear deformation of borosilicate glasses. Journal of the American Ceramic Society, 2021, 104, 3073-3086.	1.9	1
300	Examining the phase evolution of lithium disilicate glassâ€ceramics with lithium tantalate as a secondary phase. Journal of the American Ceramic Society, 2022, 105, 268.	1.9	1
301	Modeling of Glasses: An Overview. , 2020, , 1977-1995.		1
302	Value analysis of Raman amplification in 40-Gbit/s optical networks using dispersion-managed fiber. Journal of Optical Networking, 2004, 4, 38.	2.5	0
303	Semi-Empirical Technique for Computation of Glass Density. Journal of the American Ceramic Society, 2007, 90, 070924065850001-???.	1.9	0
304	Thermal expansion of glass. , 2019, , 253-271.		0
305	Permeation, diffusion, and ionic conduction in glass. , 2019, , 383-424.		0
306	Composition-structure-property relationship principles. , 2019, , 165-172.		0

#	Article	IF	CITATIONS
307	Density and molar volume. , 2019, , 173-186.		Ο
308	The viscosity of glass. , 2019, , 215-251.		0
309	Modeling of glass. , 2019, , 607-630.		0
310	Fundamentals of Organic-Glass Adhesion. , 2019, , 1-41.		0
311	Modeling the Relaxation Behavior of Glasses for Display Applications. , 2019, , 1-19.		0
312	Modeling the Relaxation Behavior of Glasses for Display Applications. , 2019, , 1-19.		0
313	Comment on "The fragility of alkali silicate glass melts: Part of a universal topological pattern―by D.L. Sidebottom. Journal of Non-Crystalline Solids, 2020, 529, 119799.	1.5	0
314	Bauchy <i>etÂal.</i> Reply:. Physical Review Letters, 2020, 124, 199602.	2.9	0
315	Remembering Joanna McKittrick. Journal of the American Ceramic Society, 2020, 103, 2277-2277.	1.9	0
316	Diffusion in Polymers and Glasses. , 2021, , 199-215.		0
317	Monte Carlo Techniques. , 2021, , 443-466.		0
318	Relaxation of Glasses and Polymers. , 2021, , 389-418.		0
319	Viscosity of Liquids. , 2021, , 269-294.		0
320	Master Equations. , 2021, , 363-387.		0
321	Energy Landscapes. , 2021, , 315-340.		0
322	Broken Ergodicity. , 2021, , 341-362.		0
323	Fluctuations in Condensed Matter. , 2021, , 467-486.		0
324	Molecular Dynamics. , 2021, , 419-442.		0

#	Article	IF	CITATIONS
325	Modeling of Glasses: an Overview. , 2019, , 1-19.		0
326	Thermal treatment of ionâ \in exchanged glass. International Journal of Applied Glass Science, O, , .	1.0	0
327	Modeling the relaxation of fluctuations in glass during the Ritland crossover experiment. MRS Communications, 0, , .	0.8	0