
Maribela C Pestana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4463651/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. Scientia Horticulturae, 2005, 104, 25-36.	3.6	105
2	EFFECTIVENESS OF DIFFERENT FOLIAR IRON APPLICATIONS TO CONTROL IRON CHLOROSIS IN ORANGE TREES GROWN ON A CALCAREOUS SOIL. Journal of Plant Nutrition, 2001, 24, 613-622.	1.9	53
3	Influence of cultivation salinity in the nutritional composition, antioxidant capacity and microbial quality of Salicornia ramosissima commercially produced in soilless systems. Food Chemistry, 2020, 333, 127525.	8.2	48
4	RESPONSES OF "NEWHALL―ORANGE TREES TO IRON DEFICIENCY IN HYDROPONICS: EFFECTS ON LEAF CHLOROPHYLL, PHOTOSYNTHETIC EFFICIENCY, AND ROOT FERRIC CHELATE REDUCTASE ACTIVITY. Journal of Plant Nutrition, 2001, 24, 1609-1620.	1.9	45
5	Relationships between strawberry fruit quality attributes and crop load. Scientia Horticulturae, 2011, 130, 398-403.	3.6	45
6	Development and recovery of iron deficiency by iron resupply to roots or leaves of strawberry plants. Plant Physiology and Biochemistry, 2012, 53, 1-5.	5.8	44
7	Tolerance mechanisms of three potted ornamental plants grown under moderate salinity. Scientia Horticulturae, 2016, 201, 84-91.	3.6	42
8	Chlorophyll fluorescence imaging as a tool to understand the impact of iron deficiency and resupply on photosynthetic performance of strawberry plants. Scientia Horticulturae, 2014, 165, 148-155.	3.6	40
9	Response of five citrus rootstocks to iron deficiency. Journal of Plant Nutrition and Soil Science, 2011, 174, 837-846.	1.9	34
10	Floral analysis as a tool to diagnose iron chlorosis in orange trees. Plant and Soil, 2004, 259, 287-295.	3.7	33
11	THE USE OF FLORAL ANALYSIS TO DIAGNOSE THE NUTRITIONAL STATUS OF ORANGE TREES. Journal of Plant Nutrition, 2001, 24, 1913-1923.	1.9	31
12	Tolerance of young (Ceratonia siliqua L.) carob rootstock to NaCl. Agricultural Water Management, 2010, 97, 910-916.	5.6	27
13	<i>Lavandula multifida</i> response to salinity: Growth, nutrient uptake, and physiological changes. Journal of Plant Nutrition and Soil Science, 2017, 180, 96-104.	1.9	27
14	Relationship between tipburn and leaf mineral composition in strawberry. Scientia Horticulturae, 2010, 126, 242-246.	3.6	25
15	Relationships between nutrient composition of flowers and fruit quality in orange trees grown in calcareous soil. Tree Physiology, 2005, 25, 761-767.	3.1	22
16	The memory of iron stress in strawberry plants. Plant Physiology and Biochemistry, 2016, 104, 36-44.	5.8	21
17	Strawberry recovers from iron chlorosis after foliar application of a grassâ€clipping extract. Journal of Plant Nutrition and Soil Science, 2011, 174, 473-479.	1.9	20
18	Effect of <i>Bacillus velezensis</i> and <i>Glomus intraradices</i> on Fruit Quality and Growth Parameters in Strawberry Soilless Growing System. Horticulture Journal, 2015, 84, 122-130.	0.8	20

MARIBELA C PESTANA

#	Article	IF	CITATIONS
19	Nutritional and physiological responses of the dicotyledonous halophyte Sarcocornia fruticosa to salinity. Australian Journal of Botany, 2017, 65, 573.	0.6	16
20	Changes in the concentration of organic acids in roots and leaves of carob-tree under Fe deficiency. Functional Plant Biology, 2014, 41, 496.	2.1	15
21	Nutrient deficiencies in carob (<i>Ceratonia siliqua</i> L.) grown in solution culture. Journal of Horticultural Science and Biotechnology, 2003, 78, 847-852.	1.9	14
22	The root ferric-chelate reductase of Ceratonia siliqua (L.) and Poncirus trifoliata (L.) Raf. responds differently to a low level of iron. Scientia Horticulturae, 2012, 135, 65-67.	3.6	13
23	Lime-Induced Iron Chlorosis in Fruit Trees. , 2004, , 171-215.		12
24	Exploratory Analysis of the Productivity of Carob Tree (Ceratonia siliqua) Orchards Conducted under Dry-Farming Conditions. Sustainability, 2018, 10, 2250.	3.2	12
25	FOLIAR TREATMENTS AS A STRATEGY TO CONTROL IRON CHLOROSIS IN ORANGE TREES. Acta Horticulturae, 2002, , 223-228.	0.2	11
26	ROOT FERRIC CHELATE REDUCTASE IS REGULATED BY IRON AND COPPER IN STRAWBERRY PLANTS. Journal of Plant Nutrition, 2013, 36, 2035-2047.	1.9	11
27	Biologically active compounds available in Ceratonia siliqua L. grown in contrasting soils under Mediterranean climate. Scientia Horticulturae, 2018, 235, 228-234.	3.6	11
28	A novel plant extract as a biostimulant to recover strawberry plants from iron chlorosis. Journal of Plant Nutrition, 2020, 43, 2054-2066.	1.9	10
29	EVALUATION OF FE DEFICIENCY EFFECTS ON STRAWBERRY FRUIT QUALITY. Acta Horticulturae, 2010, , 423-428.	0.2	7
30	Irrigation with drainage solutions improves the growth and nutrients uptake in Juncus acutus. Ecological Engineering, 2016, 95, 237-244.	3.6	7
31	Silencing of the FRO1 gene and its effects on iron partition in Nicotiana benthamiana. Plant Physiology and Biochemistry, 2017, 114, 111-118.	5.8	7
32	Fe deficiency induction in Poncirus trifoliata rootstock growing in nutrient solution changes its performance after transplant to soil. Scientia Horticulturae, 2015, 182, 102-109.	3.6	6
33	Management of carob tree orchards in Mediterranean ecosystems: strategies for a carbon economy implementation. Agroforestry Systems, 2017, 91, 295-306.	2.0	6
34	Responses of tomato (<i>Solanum lycopersicum</i> L.) plants to iron deficiency in the root zone. Folia Horticulturae, 2019, 31, 223-234.	1.8	6
35	Nutritional Evaluation of Nitrogen and Potassium Fertilization of Carob Tree under Dryâ€Farming Conditions. Communications in Soil Science and Plant Analysis, 2008, 39, 652-666.	1.4	4
36	Nutrient Dynamics in Orange Trees: The Effect of Soil Fertility. Communications in Soil Science and Plant Analysis, 2011, 42, 2351-2360.	1.4	3

MARIBELA C PESTANA

#	Article	IF	CITATIONS
37	Changes in nutritional homeostasis ofPoncirus trifoliataandCeratonia siliquaas a response to different iron levels in nutrient solution. Journal of Plant Nutrition, 2018, 41, 2103-2115.	1.9	2
38	Evaluation of Carob Tree Productivity during a 30-Year Period, in Relation to Precipitation and Air Temperature. Environmental Processes, 2020, 7, 1221-1233.	3.5	2
39	Clorose férrica induzida pelo calcário. Revista Ceres, 2014, 61, 849-855.	0.4	1
40	IS THERE A RELATIONSHIP BETWEEN FERRIC-CHELATE REDUCTASE ACTIVITY IN ROOTS OF PONCIRUS TRIFOLIATE AND LEAF CHLOROPHYLL CONTENTS?. Acta Horticulturae, 2015, , 373-377.	0.2	1
41	Can Bicarbonate Enhance the Performance of Carob Seedlings Grown in Nutrient Solutions with Different Fe Concentrations?. Journal of Soil Science and Plant Nutrition, 2020, 20, 55-65.	3.4	1
42	EFFECTS OF FERTILISER PRACTICES ON THE GROWTH AND QUALITY OF TWO TABLE GRAPE CULTIVARS: 'CARDINAL' AND 'D. MARIA'. Acta Horticulturae, 2004, , 241-247.	0.2	1
43	Effect of different iron compounds applied to leaves on growth of strawberry. Acta Horticulturae, 2019, , 495-500.	0.2	0