Jae-Young Koh

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4463342/publications.pdf
Version: 2024-02-01

1	Roles for H ⁺/K⁺â€ \langle scp >ATPase</scp> and zinc transporter 3 in <scp>cAMP</scp>â€mediated lysosomal acidification in bafilomycin <scp>A1</scp>â€treated astrocytes. Glia, 2021, 69, 1110-1125.	4.9	15
2	Mechanism of Zinc Excitotoxicity: A Focus on AMPK. Frontiers in Neuroscience, 2020, 14, 577958.	2.8	21
3	Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases. Molecular Brain, 2020, 13, 116.	2.6	45
4	Aflibercept ameliorates retinal pericyte loss and restores perfusion in streptozotocin-induced diabetic mice. BMJ Open Diabetes Research and Care, 2020, 8, e001278.	2.8	8
5	A Novel Zinc Chelator, 1H10, Ameliorates Experimental Autoimmune Encephalomyelitis by Modulating Zinc Toxicity and AMPK Activation. International Journal of Molecular Sciences, 2020, 21, 3375.	4.1	6
6	Cilostazol restores autophagy flux in bafilomycin A1-treated, cultured cortical astrocytes through lysosomal reacidification: roles of PKA, zinc and metallothionein 3. Scientific Reports, 2020, 10, 9175.	3.3	10
7	Changes in plasma lipoxin A4, resolvins and CD59 levels after ischemic and traumatic brain injuries in rats. Korean Journal of Physiology and Pharmacology, 2020, 24, 165.	1.2	7
8	A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Scientific Reports, 2020, 10, 2015.	3.3	19
9	Role of zinc dyshomeostasis in inflammasome formation in cultured cortical cells following lipopolysaccharide or oxygen-glucose deprivation/reperfusion exposure. Neurobiology of Disease, 2020, 137, 104771.	4.4	12

Potential Role of Zinc Dyshomeostasis in Matrix Metalloproteinase-2 and -9 Activation and
Photoreceptor Cell Death in Experimental Retinal Detachment. , 2018, 59, 3058 .

A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the
27 Prediction of Alzheimer's disease pathophysiology based on cortical thickness patterns. Alzheimer's
38

Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Molecular Psychiatry, 2015, 20, 880-888.
7.9

65
Anti-Angiogenic Effect of Metformin in Mouse Oxygen-Induced Retinopathy Is Mediated by Reducing
Levels of the Vascular Endothelial Growth Factor Receptor Flk-1. PLoS ONE, 2015, 10, e0119708.

40 Amyloid Beta-Weighted Cortical Thickness: A New Imaging Biomarker in Alzheimer's Disease. Current

41	Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients. Molecular Brain, 2014, 7, 64.	2.6	31
42	Down-regulation of Mortalin Exacerbates Â̂2-mediated Mitochondrial Fragmentation and Dysfunction. Journal of Biological Chemistry, 2014, 289, 2195-2204.	3.4	58
43	The role of reciprocal activation of cAbl and Mstl in the Oxidative death of cultured astrocytes. Glia, 2014, 62, 639-648.	4.9	38
44	The role of metallothionein-3 in streptozotocin-induced beta-islet cell death and diabetes in mice. Metallomics, 2014, 6, 1748.	2.4	11
45	Tissue plasminogen activator arrests Alzheimer's disease pathogenesis. Neurobiology of Aging, 2014, 35, 511-519.	3.1	40
46	Suppression of Cpn10 Increases Mitochondrial Fission and Dysfunction in Neuroblastoma Cells. PLoS ONE, 2014, 9, el12130.	2.5	5
47	Angiotensin II potentiates zinc-induced cortical neuronal death by acting on angiotensin II type 2 receptor. Molecular Brain, 2013, 6, 50.	2.6	13
48	Methallothionein-3 contributes to vascular endothelial growth factor induction in a mouse model of choroidal neovascularization. Metallomics, 2013, 5, 1387.	2.4	15
49	Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 2013, 59, 80-85.	4.4	62

50 BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular

Alteration of the Cerebral Zinc Pool in a Mouse Model of Alzheimer Disease. Journal of
Neuropathology and Experimental Neurology, 2012, 71, 211-222.

The neurosteroids, allopregnanolone and progesterone, induce autophagy in cultured astrocytes.
Neurochemistry International, 2012, 60, 125-133.

Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8,
Neuropathogenic role of adenylate kinase-1 in Â̂2-mediated tau phosphorylation via AMPK and GSK3 ${ }^{2}$.
Human Molecular Genetics, $2012,21,2725-2737$.
2.7

31

Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line.
BioMetals, 2010, 23, 997-1013.
4.1

105

65 Apolipoprotein E ablation decreases synaptic vesicular zinc in the brain. BioMetals, 2010, 23, 1085-1095.
4.1

21

66 Metallothioneinâ $€ 3$ regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia, 2010, 58, 1186-1196.
4.9

52
67 Induction of Lysosomal Dilatation, Arrested Autophagy, and Cell Death by Chloroquine in Cultured ARPE-19 Cells. , 2010, 51, 6030.

Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and

Inflammatory and Hemostatic Biomarkers Associated With Early Recurrent Ischemic Lesions in Acute
73 The involvement of caspaseâ€ 1 in TPENâ€induced apoptosis. FEBS Letters, 2008, 582, 1871-1876. 2.8Essential Role for Zinc-Triggered p75^{NTR}Activation in Preconditioning Neuroprotection.
3114-3122.
76 Inhibitory Effect of Bevacizumab on the Angiogenesis and Growth of Retinoblastoma. JAMA
Early Recurrent Ischemic Lesions on Diffusion-Weighted Imaging in Symptomatic Intracranial
Atherosclerosis. Archives of Neurology, 2007, 64, 50.
Pyruvate protects against kainate-induced epileptic brain damage in rats. Experimental Neurology,
2007, 208, 159-167.
4.1
29
80 Upregulation of tPA/plasminogen proteolytic system in the periphery of amyloid deposits in the $\operatorname{Tg} 2576$
mouse model of Alzheimer's disease. Neuroscience Letters, 2007, 423, 82-87.
$2.1 \quad 32$
81 Insulin Increases Retinal Hemorrhage in Mild Oxygen-Induced Retinopathy in the Rat: Inhibition by Riluzole. , 2007, 48, 5671.
Copper activates TrkB in cortical neurons in a metalloproteinase-dependent manner. Journal ofNeuroscience Research, 2007, 85, 2160-2166.
2.938
Non-proteolytic neurotrophic effects of tissue plasminogen activator on cultured mouse cerebrocortical neurons. Journal of Neurochemistry, 2007, 101, 1236-1247.
$3.9 \quad 39$

Systemic pyruvate administration markedly reduces infarcts and motor deficits in rat models of
84 transient and permanent focal cerebral ischemia. Neurobiology of Disease, 2007, 26, 94-104.
4.4

54

85 Cytosolic labile zinc: a marker for apoptosis in the developing rat brain. European Journal of
$2.6 \quad 18$
Neuroscience, 2006, 23, 435-442.

Synaptic release of zinc from brain slices: Factors governing release, imaging, and accurate calculation of concentration. Journal of Neuroscience Methods, 2006, 154, 19-29.
2.5

109

Progressive neuronal loss and behavioral impairments of transgenic C57BL/6 inbred mice expressing
the carboxy terminus of amyloid precursor protein. Neurobiology of Disease, 2006, 22, 10-24.
4.4

45

Riluzole Inhibits VEGF-Induced Endothelial Cell Proliferation In Vitro and Hyperoxia-Induced Abnormal
Vessel Formation In Vivo. , 2005, 46, 4780.

Activation of the Trk Signaling Pathway by Extracellular Zinc. Journal of Biological Chemistry, 2005,
280, 11995-12001.

Infarct reduction in rats following intraventricular administration of either tissue plasminogen activator (tPA) or its non-protease mutant S478A-tPA. Experimental Neurology, 2004, 189, 354-360.
$4.1 \quad 15$

The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human $\hat{1}^{2}$-amyloid precursor protein transgenic mice. Neurobiology of Aging, 2004, 25, 1315-1321.

Design and biological evaluation of novel antioxidants containing N-t-Butyl-N-hydroxylaminophenyl moieties. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2273-2275.
$\begin{array}{ll}2.2 & 7\end{array}$99 NR2A induction and NMDA receptor-dependent neuronal death by neurotrophin-4/5 in cortical cellculture. Journal of Neurochemistry, 2003, 88, 708-716.
101. Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal
death following acute brain injury. Experimental Neurology, 2003, 184, 337-347.
4.1neurotrophin-4/5. Journal of Neurochemistry, 2002, 82, 894-902.115 Protein synthesis-dependent but Bcl-2-independent cytochrome C release in zinc depletion-induced

Depletion of intracellular zinc induces macromolecule synthesis- and caspase-dependent apoptosis of cultured retinal cells. Brain Research, 2000, 869, 39-48.
117 Ethambutol-Induced Vacuolar Changes and Neuronal Loss in Rat Retinal Cell Culture: Mediation by
117 Endogenous Zinc. Toxicology and Applied Pharmacology, 2000, 162, 107-114.
2.8
62
118 Induction and Activation by Zinc of NADPH Oxidase in Cultured Cortical Neurons and Astrocytes.Journal of Neuroscience, 2000, 20, RC111-RC111.
Co-Induction of p75 ^{NTR}and p75 ^{NTR}-Associated Death Executor in Neurons
119 After Zinc Exposure in Cortical Culture or Transient Ischemia in the Rat. Journal of Neuroscience, 3.6 112 2000, 20, 9096-9103.
120 Induction by Synaptic Zinc of Heat Shock Protein-70 in Hippocampus after Kainate Seizures.4.132Experimental Neurology, 2000, 161, 433-441.A Novel Neuroprotective Mechanism of Riluzole: Direct Inhibition of Protein Kinase C. Neurobiology

High vulnerability of GABA-immunoreactive neurons to kainate in rat retinal cultures: correlation
2.2

129 Nonproteolytic Neuroprotection by Human Recombinant Tissue Plasminogen Activator. Science, 1999, 284, 647-650.

Presenilin 1 mediates protein kinase C dependent $\hat{l}_{ \pm}$-secretase derived amyloid precursor protein

| 130 | secretion and mitogen-activated protein kinase activation in presenilin 1 transfected human embryonic
 kidney 293 cell. Neuroscience Letters, 1999, 269, 99-102. | 2.1 | 8 |
| :--- | :--- | :---: | :---: | kidney 293 cell. Neuroscience Letters, 1999, 269, 99-102.

131 Zinc-induced cortical neuronal death with features of apoptosis and necrosis: Mediation by free
radicals. Neuroscience, 1999, 89, 175-182.

2.3

247

N-Methyl-d-aspartate Receptor Blockade Induces Neuronal Apoptosis in Cortical Culture. Experimental
Neurology, 1999, 159, 124-130.
4.1

77

133 ZINC AND BRAIN INJURY. Annual Review of Neuroscience, 1998, 21, 347-375.
10.7

720

134 Depletion of Intracellular Zinc Induces Protein Synthesis-Dependent Neuronal Apoptosis in Mouse
Cortical Culture. Experimental Neurology, 1998, 154, 47-56.

135 Medial Medullary Infarction with Restricted Sensory Symptom. European Neurology, 1998, 39, 174-177.
1.4

15

136 Measurement of Intracellular Free Zinc in Living Cortical Neurons: Routes of Entry. Journal of Neuroscience, 1997, 17, 9554-9564.
3.6

436

> 137 The Role of Zinc in Selective Neuronal Death After Transient Clobal Cerebral Ischemia. Science, 1996,
> $272,1013-1016$.
$12.6 \quad 1,007$

138 Potentiated Necrosis of Cultured Cortical Neurons by Neurotrophins. Science, 1995, 268, 573-575.
12.6

363

139 Staurosporine-Induced Neuronal Apoptosis. Experimental Neurology, 1995, 135, 153-159.
4.1

236

140 Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience, 1995, 68, 615-619.
2.3

249

141 AMPA receptor activation potentiates zinc neurotoxicity. Neuron, 1993, 10, 43-49.
8.1

271

142 Programmed cell death: its possible contribution to neurotoxicity mediated by calcium channel antagonists. Brain Research, 1992, 587, 233-240.

A metabotropic glutamate receptor agonist does not mediate neuronal degeneration in cortical culture. Brain Research, 1991, 561, 338-343.

Selective blockade of non-NMDA receptors does not block rapidly triggered glutamate-induced
neuronal death. Brain Research, 1991, 548, 318-321.

B- Amyloid increases neuronal susceptibility to injufy by glucose deprivation. NeuroReport, 1991, 2, 763-765.

Non-NMDA receptor-mediated neurotoxicity in cortical culture. Journal of Neuroscience, 1990, 10, 693-705.
3.6
̂̂2-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Research, 1990, 533, 315-320.
$149 \quad$ Zinc and LTP. Nature, 1989, 338, 212-212.
27.8

50

Clutamate Neurotoxicity, Calcium, and Zinc. Annals of the New York Academy of Sciences, 1989, 568, 219-224.

Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of
neurons containing NADPH-diaphorase. Journal of Neuroscience, 1988, 8, 2153-2163.

Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science, 1987, 236, 589-593.
12.6

659
Neurotoxicity of $\hat{1}^{2}-\mathrm{N}$-methylamino-l-alanine (BMAA) and $\hat{1}^{2}-\mathrm{N}$-oxalylamino-l-alamine (BOAA) on cultured cortical neurons. Brain Research, 1989, 497, 64-71.
Cultured striatal neurons containing NADPH-diaphorase or acetylcholinesterase are selectively resistant to injury by NMDA receptor agonists. Brain Research, 1988, 446, 374-378.151 cortical neurons. Brain Research, 1989, 497, 64-71.

153	Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-diaphorase. Journal of Neuroscience, 1988, 8, 2153-2163.	3.6	315
154	Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science, 1987, 236, 589-593.	12.6	659
155	\|-Homocysteate is a potent neurotoxin on cultured cortical neurons. Brain Research, 1987, 437, 103-110.	2.2	99
156	Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. Journal of Neuroscience Methods, 1987, 20, 83-90.	2.5	1,272
157	Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Science, 1986, 234, 73-76.	12.6	294

