Jae-Young Koh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4463342/publications.pdf

Version: 2024-02-01

157 papers	20,847 citations	60 h-index	9861 141 g-index
158	158	158	22629
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Roles for H ⁺ /K ⁺ â€ <scp>ATPase</scp> and zinc transporter 3 in <scp>cAMP</scp> â€mediated lysosomal acidification in bafilomycin <scp>A1</scp> â€treated astrocytes. Glia, 2021, 69, 1110-1125.	4.9	15
2	Mechanism of Zinc Excitotoxicity: A Focus on AMPK. Frontiers in Neuroscience, 2020, 14, 577958.	2.8	21
3	Metallothionein-3 as a multifunctional player in the control of cellular processes and diseases. Molecular Brain, 2020, 13, 116.	2.6	45
4	Aflibercept ameliorates retinal pericyte loss and restores perfusion in streptozotocin-induced diabetic mice. BMJ Open Diabetes Research and Care, 2020, 8, e001278.	2.8	8
5	A Novel Zinc Chelator, 1H10, Ameliorates Experimental Autoimmune Encephalomyelitis by Modulating Zinc Toxicity and AMPK Activation. International Journal of Molecular Sciences, 2020, 21, 3375.	4.1	6
6	Cilostazol restores autophagy flux in bafilomycin A1-treated, cultured cortical astrocytes through lysosomal reacidification: roles of PKA, zinc and metallothionein 3. Scientific Reports, 2020, 10, 9175.	3.3	10
7	Changes in plasma lipoxin A4, resolvins and CD59 levels after ischemic and traumatic brain injuries in rats. Korean Journal of Physiology and Pharmacology, 2020, 24, 165.	1.2	7
8	A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Scientific Reports, 2020, 10, 2015.	3.3	19
9	Role of zinc dyshomeostasis in inflammasome formation in cultured cortical cells following lipopolysaccharide or oxygen-glucose deprivation/reperfusion exposure. Neurobiology of Disease, 2020, 137, 104771.	4.4	12
10	Loss of HSPA9 induces peroxisomal degradation by increasing pexophagy. Autophagy, 2020, 16, 1989-2003.	9.1	34
11	Zinc transporter 3 modulates cell proliferation and neuronal differentiation in the adult hippocampus. Stem Cells, 2020, 38, 994-1006.	3.2	22
12	Contribution of Zinc-Dependent Delayed Calcium Influx via TRPC5 in Oxidative Neuronal Death and its Prevention by Novel TRPC Antagonist. Molecular Neurobiology, 2019, 56, 2822-2835.	4.0	20
13	Comparative analyses of plasma amyloid- \hat{l}^2 levels in heterogeneous and monomerized states by interdigitated microelectrode sensor system. Science Advances, 2019, 5, eaav1388.	10.3	34
14	Lysosomal dysfunction in proteinopathic neurodegenerative disorders: possible therapeutic roles of cAMP and zinc. Molecular Brain, 2019, 12, 18.	2.6	75
15	Down-regulated TMED10 in Alzheimer disease induces autophagy via ATG4B activation. Autophagy, 2019, 15, 1495-1505.	9.1	25
16	Identifying New AMP-Activated Protein Kinase Inhibitors That Protect against Ischemic Brain Injury. ACS Chemical Neuroscience, 2019, 10, 2345-2354.	3. 5	7
17	Possible Therapeutic Roles of Metallothionein-3 and Zinc in Endosome-Autophagosome-Lysosome Pathway (EALP) Dysfunction in Astrocytes. , 2019, , 187-200.		O
18	Correction: Inhibition of EHMT2/G9a epigenetically increases the transcription of Beclin-1 via an increase in ROS and activation of NF- $\hat{1}^{\circ}$ B. Oncotarget, 2019, 10, 4348-4349.	1.8	1

#	Article	IF	CITATIONS
19	Potential Role of Zinc Dyshomeostasis in Matrix Metalloproteinase-2 and -9 Activation and Photoreceptor Cell Death in Experimental Retinal Detachment., 2018, 59, 3058.		8
20	Inhibition of Drp1 Ameliorates Synaptic Depression, $\hat{Al^2}$ Deposition, and Cognitive Impairment in an Alzheimer's Disease Model. Journal of Neuroscience, 2017, 37, 5099-5110.	3.6	176
21	The anti-ALS drug riluzole attenuates pericyte loss in the diabetic retinopathy of streptozotocin-treated mice. Toxicology and Applied Pharmacology, 2017, 315, 80-89.	2.8	16
22	Ursodeoxycholic Acid Attenuates Endoplasmic Reticulum Stress-Related Retinal Pericyte Loss in Streptozotocin-Induced Diabetic Mice. Journal of Diabetes Research, 2017, 2017, 1-10.	2.3	41
23	Efficacy and safety of aflibercept in in vitro and in vivo models of retinoblastoma. Journal of Experimental and Clinical Cancer Research, 2016, 35, 171.	8.6	10
24	A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate. Archives of Pharmacal Research, 2016, 39, 1151-1159.	6.3	16
25	Zinc transporter 3 (ZnT3) gene deletion reduces spinal cord white matter damage and motor deficits in a murine MOG-induced multiple sclerosis model. Neurobiology of Disease, 2016, 94, 205-212.	4.4	15
26	Autism phenotypes in ZnT3 null mice: Involvement of zinc dyshomeostasis, MMP-9 activation and BDNF upregulation. Scientific Reports, 2016, 6, 28548.	3.3	49
27	Prediction of Alzheimer's disease pathophysiology based on cortical thickness patterns. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2016, 2, 58-67.	2.4	58
28	AMP-activated protein kinase contributes to zinc-induced neuronal death via activation by LKB1 and induction of Bim in mouse cortical cultures. Molecular Brain, 2016, 9, 14.	2.6	30
29	Inhibition of EHMT2/G9a epigenetically increases the transcription of <i>Beclin-1</i> via an increase in ROS and activation of NF-κB. Oncotarget, 2016, 7, 39796-39808.	1.8	46
30	The zinc ionophore clioquinol reverses autophagy arrest in chloroquine-treated ARPE-19 cells and in APP/mutant presenilin-1–transfected Chinese hamster ovary cells. Neurobiology of Aging, 2015, 36, 3228-3238.	3.1	29
31	Heterogeneous nuclear ribonucleoprotein A1 post-transcriptionally regulates Drp1 expression in neuroblastoma cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1423-1431.	1.9	31
32	Metallothionein-3 modulates the amyloid \hat{l}^2 endocytosis of astrocytes through its effects on actin polymerization. Molecular Brain, 2015, 8, 84.	2.6	47
33	Indomethacin preconditioning induces ischemic tolerance by modifying zinc availability in the brain. Neurobiology of Disease, 2015, 81, 186-195.	4.4	7
34	Pyruvate and cilostazol protect cultured rat cortical pericytes against tissue plasminogen activator (tPA)-induced cell death. Brain Research, 2015, 1628, 317-326.	2,2	6
35	Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase. Molecules and Cells, 2015, 38, 138-144.	2.6	51
36	Angiopoietin-1 blocks neurotoxic zinc entry into cortical cells via PIP2 hydrolysis-mediated ion channel inhibition. Neurobiology of Disease, 2015, 81, 203-213.	4.4	5

#	Article	IF	Citations
37	Trans-synaptic zinc mobilization improves social interaction in two mouse models of autism through NMDAR activation. Nature Communications, 2015, 6, 7168.	12.8	101
38	Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Molecular Psychiatry, 2015, 20, 880-888.	7.9	65
39	Anti-Angiogenic Effect of Metformin in Mouse Oxygen-Induced Retinopathy Is Mediated by Reducing Levels of the Vascular Endothelial Growth Factor Receptor Flk-1. PLoS ONE, 2015, 10, e0119708.	2.5	37
40	Amyloid Beta-Weighted Cortical Thickness: A New Imaging Biomarker in Alzheimer's Disease. Current Alzheimer Research, 2015, 12, 563-571.	1.4	5
41	Abnormalities in the zinc-metalloprotease-BDNF axis may contribute to megalencephaly and cortical hyperconnectivity in young autism spectrum disorder patients. Molecular Brain, 2014, 7, 64.	2.6	31
42	Down-regulation of Mortalin Exacerbates A \hat{l}^2 -mediated Mitochondrial Fragmentation and Dysfunction. Journal of Biological Chemistry, 2014, 289, 2195-2204.	3.4	58
43	The role of reciprocal activation of cAbl and Mst1 in the Oxidative death of cultured astrocytes. Glia, 2014, 62, 639-648.	4.9	38
44	The role of metallothionein-3 in streptozotocin-induced beta-islet cell death and diabetes in mice. Metallomics, 2014, 6, 1748.	2.4	11
45	Tissue plasminogen activator arrests Alzheimer's disease pathogenesis. Neurobiology of Aging, 2014, 35, 511-519.	3.1	40
46	Suppression of Cpn10 Increases Mitochondrial Fission and Dysfunction in Neuroblastoma Cells. PLoS ONE, 2014, 9, e112130.	2.5	5
47	Angiotensin II potentiates zinc-induced cortical neuronal death by acting on angiotensin II type 2 receptor. Molecular Brain, 2013, 6, 50.	2.6	13
48	Methallothionein-3 contributes to vascular endothelial growth factor induction in a mouse model of choroidal neovascularization. Metallomics, 2013, 5, 1387.	2.4	15
49	Autophagy activation and neuroprotection by progesterone in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 2013, 59, 80-85.	4.4	62
50	BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy, 2013, 9, 2126-2139.	9.1	134
51	Alteration of the Cerebral Zinc Pool in a Mouse Model of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2012, 71, 211-222.	1.7	34
52	The neurosteroids, allopregnanolone and progesterone, induce autophagy in cultured astrocytes. Neurochemistry International, 2012, 60, 125-133.	3.8	27
53	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
54	Induction of Autophagy and Cell Death by Tamoxifen in Cultured Retinal Pigment Epithelial and Photoreceptor Cells., 2012, 53, 5344.		69

#	Article	IF	Citations
55	Neuropathogenic role of adenylate kinase-1 in $A\hat{l}^2$ -mediated tau phosphorylation via AMPK and GSK3 \hat{l}^2 . Human Molecular Genetics, 2012, 21, 2725-2737.	2.9	67
56	Neuroprotection by urokinase plasminogen activator in the hippocampus. Neurobiology of Disease, 2012, 46, 215-224.	4.4	33
57	The Neurophysiology and Pathology of Brain Zinc. Journal of Neuroscience, 2011, 31, 16076-16085.	3.6	291
58	Zincâ€triggered induction of tissue plasminogen activator by brainâ€derived neurotrophic factor and metalloproteinases. Journal of Neurochemistry, 2011, 118, 855-863.	3.9	19
59	Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore. Neurobiology of Disease, 2011, 42, 242-251.	4.4	61
60	Obesity and downregulated hypothalamic leptin receptors in male metallothionein-3-null mice. Neurobiology of Disease, 2011, 44, 125-132.	4.4	19
61	Dependence of the histofluorescently reactive zinc pool on zinc transporter-3 in the normal brain. Brain Research, 2011, 1418, 12-22.	2.2	43
62	Role of Zinc Metallothionein-3 (ZnMt3) in Epidermal Growth Factor (EGF)-induced c-Abl Protein Activation and Actin Polymerization in Cultured Astrocytes. Journal of Biological Chemistry, 2011, 286, 40847-40856.	3.4	24
63	Endogenous Zinc Mediates Apoptotic Programmed Cell Death in the Developing Brain. Neurotoxicity Research, 2010, 17, 156-166.	2.7	31
64	Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. BioMetals, 2010, 23, 997-1013.	4.1	105
65	Apolipoprotein E ablation decreases synaptic vesicular zinc in the brain. BioMetals, 2010, 23, 1085-1095.	4.1	21
66	Metallothioneinâ€3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia, 2010, 58, 1186-1196.	4.9	52
67	Induction of Lysosomal Dilatation, Arrested Autophagy, and Cell Death by Chloroquine in Cultured ARPE-19 Cells., 2010, 51, 6030.		200
68	Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Molecular Brain, 2010, 3, 30.	2.6	190
69	Inflammatory and Hemostatic Biomarkers Associated With Early Recurrent Ischemic Lesions in Acute Ischemic Stroke. Stroke, 2009, 40, 1653-1658.	2.0	59
70	Accumulation of labile zinc in neurons and astrocytes in the spinal cords of G93A SOD-1 transgenic mice. Neurobiology of Disease, 2009, 34, 221-229.	4.4	44
71	Cytosolic labile zinc accumulation in degenerating dopaminergic neurons of mouse brain after MPTP treatment. Brain Research, 2009, 1286, 208-214.	2.2	33
72	Oxidative injury triggers autophagy in astrocytes: The role of endogenous zinc. Glia, 2009, 57, 1351-1361.	4.9	109

#	Article	IF	CITATIONS
73	The involvement of caspaseâ€11 in TPENâ€induced apoptosis. FEBS Letters, 2008, 582, 1871-1876.	2.8	30
74	Essential Role for Zinc-Triggered p75 ^{NTR} Activation in Preconditioning Neuroprotection. Journal of Neuroscience, 2008, 28, 10919-10927.	3.6	43
75	Zinc and 4-Hydroxy-2-Nonenal Mediate Lysosomal Membrane Permeabilization Induced by H ₂ O ₂ in Cultured Hippocampal Neurons. Journal of Neuroscience, 2008, 28, 3114-3122.	3.6	136
76	Inhibitory Effect of Bevacizumab on the Angiogenesis and Growth of Retinoblastoma. JAMA Ophthalmology, 2008, 126, 953.	2.4	47
77	Undernutrition as a Predictor of Poor Clinical Outcomes in Acute Ischemic Stroke Patients. Archives of Neurology, 2008, 65, 39-43.	4.5	181
78	Early Recurrent Ischemic Lesions on Diffusion-Weighted Imaging in Symptomatic Intracranial Atherosclerosis. Archives of Neurology, 2007, 64, 50.	4.5	44
79	Pyruvate protects against kainate-induced epileptic brain damage in rats. Experimental Neurology, 2007, 208, 159-167.	4.1	29
80	Upregulation of tPA/plasminogen proteolytic system in the periphery of amyloid deposits in the Tg2576 mouse model of Alzheimer's disease. Neuroscience Letters, 2007, 423, 82-87.	2.1	32
81	Insulin Increases Retinal Hemorrhage in Mild Oxygen-Induced Retinopathy in the Rat: Inhibition by Riluzole., 2007, 48, 5671.		8
82	Copper activates TrkB in cortical neurons in a metalloproteinase-dependent manner. Journal of Neuroscience Research, 2007, 85, 2160-2166.	2.9	38
83	Non-proteolytic neurotrophic effects of tissue plasminogen activator on cultured mouse cerebrocortical neurons. Journal of Neurochemistry, 2007, 101, 1236-1247.	3.9	39
84	Systemic pyruvate administration markedly reduces infarcts and motor deficits in rat models of transient and permanent focal cerebral ischemia. Neurobiology of Disease, 2007, 26, 94-104.	4.4	54
85	Cytosolic labile zinc: a marker for apoptosis in the developing rat brain. European Journal of Neuroscience, 2006, 23, 435-442.	2.6	18
86	Synaptic release of zinc from brain slices: Factors governing release, imaging, and accurate calculation of concentration. Journal of Neuroscience Methods, 2006, 154, 19-29.	2.5	109
87	Progressive neuronal loss and behavioral impairments of transgenic C57BL/6 inbred mice expressing the carboxy terminus of amyloid precursor protein. Neurobiology of Disease, 2006, 22, 10-24.	4.4	45
88	The neurobiology of zinc in health and disease. Nature Reviews Neuroscience, 2005, 6, 449-462.	10.2	1,633
89	Riluzole Inhibits VEGF-Induced Endothelial Cell Proliferation In Vitro and Hyperoxia-Induced Abnormal Vessel Formation In Vivo. , 2005, 46, 4780.		22
90	Activation of the Trk Signaling Pathway by Extracellular Zinc. Journal of Biological Chemistry, 2005, 280, 11995-12001.	3.4	186

#	Article	IF	Citations
91	Protection by Pyruvate of Rat Retinal Cells against Zinc Toxicity In Vitro, and Pressure-Induced Ischemia In Vivo. Investigative Ophthalmology and Visual Science, 2004, 45, 1523-1530.	3.3	7 2
92	Neuronal Zinc Exchange with the Blood Vessel Wall Promotes Cerebral Amyloid Angiopathy in an Animal Model of Alzheimer's Disease. Journal of Neuroscience, 2004, 24, 3453-3459.	3.6	135
93	Estrogen Decreases Zinc Transporter 3 Expression and Synaptic Vesicle Zinc Levels in Mouse Brain. Journal of Biological Chemistry, 2004, 279, 8602-8607.	3.4	80
94	Induction of pro-apoptotic calsenilin/DREAM/KChIP3 in Alzheimer's disease and cultured neurons after amyloid- \hat{l}^2 exposure. Journal of Neurochemistry, 2004, 88, 1570-1570.	3.9	31
95	Infarct reduction in rats following intraventricular administration of either tissue plasminogen activator (tPA) or its non-protease mutant S478A-tPA. Experimental Neurology, 2004, 189, 354-360.	4.1	15
96	The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human \hat{l}^2 -amyloid precursor protein transgenic mice. Neurobiology of Aging, 2004, 25, 1315-1321.	3.1	196
97	Danthron Inhibits the Neurotoxicity Induced by Various Compounds Causing Oxidative Damages Including .BETAAmyloid (25-35) in Primary Cortical Cultures. Biological and Pharmaceutical Bulletin, 2004, 27, 723-726.	1.4	22
98	Design and biological evaluation of novel antioxidants containing N-t-Butyl-N-hydroxylaminophenyl moieties. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2273-2275.	2.2	7
99	NR2A induction and NMDA receptor-dependent neuronal death by neurotrophin-4/5 in cortical cell culture. Journal of Neurochemistry, 2003, 88, 708-716.	3.9	18
100	Essential Role of E2-25K/Hip-2 in Mediating Amyloid-β Neurotoxicity. Molecular Cell, 2003, 12, 553-563.	9.7	151
101	Zinc released from metallothionein-iii may contribute to hippocampal CA1 and thalamic neuronal death following acute brain injury. Experimental Neurology, 2003, 184, 337-347.	4.1	150
102	Down-regulation of ARC contributes to vulnerability of hippocampal neurons to ischemia/hypoxia. FEBS Letters, 2003, 543, 170-173.	2.8	21
103	Co-induction of p75NTR and the associated death executor NADE in degenerating hippocampal neurons after kainate-induced seizures in the rat. Neuroscience Letters, 2003, 347, 126-130.	2.1	21
104	TrkB mediates BDNF-induced potentiation of neuronal necrosis in cortical culture. Neurobiology of Disease, 2003, 14, 110-119.	4.4	39
105	Contribution by synaptic zinc to the gender-disparate plaque formation in human Swedish mutant APP transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7705-7710.	7.1	409
106	Depletion of Intracellular Zinc from Neurons by Use of an Extracellular Chelator In Vivo and In Vitro. Journal of Histochemistry and Cytochemistry, 2002, 50, 1659-1662.	2.5	68
107	The Role of NADPH Oxidase and Neuronal Nitric Oxide Synthase in Zinc-Induced Poly(ADP-ribose) Polymerase Activation and Cell Death in Cortical Culture. Experimental Neurology, 2002, 177, 407-418.	4.1	150
108	The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. Journal of Neurochemistry, 2002, 82, 894-902.	3.9	54

#	Article	IF	Citations
109	Induction of an Immediate Early Gene egr-1 by Zinc Through Extracellular Signal-Regulated Kinase Activation in Cortical Culture. Journal of Neurochemistry, 2002, 73, 450-456.	3.9	119
110	Augmentation by zinc of NMDA receptor-mediated synaptic responses in CA1 of rat hippocampal slices: Mediation by Src family tyrosine kinases. Synapse, 2002, 46, 49-56.	1.2	38
111	Protection by Pyruvate against Transient Forebrain Ischemia in Rats. Journal of Neuroscience, 2001, 21, RC171-RC171.	3.6	154
112	Epidermal Growth Factor Induces Oxidative Neuronal Injury in Cortical Culture. Journal of Neurochemistry, 2001, 75, 298-303.	3.9	25
113	Mediation by Membrane Protein Kinase C of Zinc-Induced Oxidative Neuronal Injury in Mouse Cortical Cultures. Journal of Neurochemistry, 2001, 72, 1609-1616.	3.9	113
114	Zinc and Disease of the Brain. Molecular Neurobiology, 2001, 24, 099-106.	4.0	100
115	Protein synthesis-dependent but Bcl-2-independent cytochrome C release in zinc depletion-induced neuronal apoptosis. Journal of Neuroscience Research, 2000, 61, 508-514.	2.9	18
116	Depletion of intracellular zinc induces macromolecule synthesis- and caspase-dependent apoptosis of cultured retinal cells. Brain Research, 2000, 869, 39-48.	2.2	47
117	Ethambutol-Induced Vacuolar Changes and Neuronal Loss in Rat Retinal Cell Culture: Mediation by Endogenous Zinc. Toxicology and Applied Pharmacology, 2000, 162, 107-114.	2.8	62
118	Induction and Activation by Zinc of NADPH Oxidase in Cultured Cortical Neurons and Astrocytes. Journal of Neuroscience, 2000, 20, RC111-RC111.	3.6	290
119	Co-Induction of p75 ^{NTR} and p75 ^{NTR} -Associated Death Executor in Neurons After Zinc Exposure in Cortical Culture or Transient Ischemia in the Rat. Journal of Neuroscience, 2000, 20, 9096-9103.	3.6	112
120	Induction by Synaptic Zinc of Heat Shock Protein-70 in Hippocampus after Kainate Seizures. Experimental Neurology, 2000, 161, 433-441.	4.1	32
121	A Novel Neuroprotective Mechanism of Riluzole: Direct Inhibition of Protein Kinase C. Neurobiology of Disease, 2000, 7, 375-383.	4.4	107
122	Zn2+: a novel ionic mediator of neural injury in brain disease. Trends in Pharmacological Sciences, 2000, 21, 395-401.	8.7	536
123	Protein synthesisâ€dependent but Bclâ€2â€independent cytochrome C release in zinc depletionâ€induced neuronal apoptosis. Journal of Neuroscience Research, 2000, 61, 508-514.	2.9	2
124	Histochemically Reactive Zinc in Plaques of the Swedish Mutant \hat{I}^2 -Amyloid Precursor Protein Transgenic Mice. Journal of Neuroscience, 1999, 19, RC10-RC10.	3.6	116
125	Insulin-Induced Oxidative Neuronal Injury in Cortical Culture: Mediation by Induced N-Methyl-D-aspartate Receptors. IUBMB Life, 1999, 48, 263-269.	3.4	16
126	Antioxidative and Proapoptotic Effects of Riluzole on Cultured Cortical Neurons. Journal of Neurochemistry, 1999, 72, 716-723.	3.9	55

#	Article	IF	Citations
127	Insulinâ€Induced Oxidative Neuronal Injury in Cortical Culture: Mediation by Induced Nâ€Methylâ€Dâ€aspartate Receptors. IUBMB Life, 1999, 48, 263-269.	3.4	20
128	High vulnerability of GABA-immunoreactive neurons to kainate in rat retinal cultures: correlation with the kainate-stimulated cobalt uptake. Brain Research, 1999, 823, 33-41.	2.2	16
129	Nonproteolytic Neuroprotection by Human Recombinant Tissue Plasminogen Activator. Science, 1999, 284, 647-650.	12.6	153
130	Presenilin 1 mediates protein kinase C dependent α-secretase derived amyloid precursor protein secretion and mitogen-activated protein kinase activation in presenilin 1 transfected human embryonic kidney 293 cell. Neuroscience Letters, 1999, 269, 99-102.	2.1	8
131	Zinc-induced cortical neuronal death with features of apoptosis and necrosis: Mediation by free radicals. Neuroscience, 1999, 89, 175-182.	2.3	247
132	N-Methyl-d-aspartate Receptor Blockade Induces Neuronal Apoptosis in Cortical Culture. Experimental Neurology, 1999, 159, 124-130.	4.1	77
133	ZINC AND BRAIN INJURY. Annual Review of Neuroscience, 1998, 21, 347-375.	10.7	720
134	Depletion of Intracellular Zinc Induces Protein Synthesis-Dependent Neuronal Apoptosis in Mouse Cortical Culture. Experimental Neurology, 1998, 154, 47-56.	4.1	78
135	Medial Medullary Infarction with Restricted Sensory Symptom. European Neurology, 1998, 39, 174-177.	1.4	15
136	Measurement of Intracellular Free Zinc in Living Cortical Neurons: Routes of Entry. Journal of Neuroscience, 1997, 17, 9554-9564.	3.6	436
137	The Role of Zinc in Selective Neuronal Death After Transient Global Cerebral Ischemia. Science, 1996, 272, 1013-1016.	12.6	1,007
138	Potentiated Necrosis of Cultured Cortical Neurons by Neurotrophins. Science, 1995, 268, 573-575.	12.6	363
139	Staurosporine-Induced Neuronal Apoptosis. Experimental Neurology, 1995, 135, 153-159.	4.1	236
140	Blockade of glutamate receptors unmasks neuronal apoptosis after oxygen-glucose deprivation in vitro. Neuroscience, 1995, 68, 615-619.	2.3	249
141	AMPA receptor activation potentiates zinc neurotoxicity. Neuron, 1993, 10, 43-49.	8.1	271
142	Programmed cell death: its possible contribution to neurotoxicity mediated by calcium channel antagonists. Brain Research, 1992, 587, 233-240.	2.2	114
143	A metabotropic glutamate receptor agonist does not mediate neuronal degeneration in cortical culture. Brain Research, 1991, 561, 338-343.	2.2	43
144	Increased excitotoxic vulnerability of cortical cultures with reduced levels of glutathione. European Journal of Pharmacology, 1991, 192, 199-200.	3.5	65

#	Article	IF	CITATIONS
145	Selective blockade of non-NMDA receptors does not block rapidly triggered glutamate-induced neuronal death. Brain Research, 1991, 548, 318-321.	2.2	83
146	B- Amyloid increases neuronal susceptibility to injufy by glucose deprivation. NeuroReport, 1991, 2, 763-765.	1.2	108
147	Non-NMDA receptor-mediated neurotoxicity in cortical culture. Journal of Neuroscience, 1990, 10, 693-705.	3.6	292
148	\hat{l}^2 -Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Research, 1990, 533, 315-320.	2.2	630
149	Zinc and LTP. Nature, 1989, 338, 212-212.	27.8	50
150	Glutamate Neurotoxicity, Calcium, and Zinc. Annals of the New York Academy of Sciences, 1989, 568, 219-224.	3.8	44
151	Neurotoxicity of \hat{l}^2 -N-methylamino-l-alanine (BMAA) and \hat{l}^2 -N-oxalylamino-l-alamine (BOAA) on cultured cortical neurons. Brain Research, 1989, 497, 64-71.	2.2	205
152	Cultured striatal neurons containing NADPH-diaphorase or acetylcholinesterase are selectively resistant to injury by NMDA receptor agonists. Brain Research, 1988, 446, 374-378.	2.2	129
153	Vulnerability of cultured cortical neurons to damage by excitotoxins: differential susceptibility of neurons containing NADPH-diaphorase. Journal of Neuroscience, 1988, 8, 2153-2163.	3.6	315
154	Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science, 1987, 236, 589-593.	12.6	659
155	l-Homocysteate is a potent neurotoxin on cultured cortical neurons. Brain Research, 1987, 437, 103-110.	2.2	99
156	Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. Journal of Neuroscience Methods, 1987, 20, 83-90.	2.5	1,272
157	Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity. Science, 1986, 234, 73-76.	12.6	294