
Rosario M P Colodrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4463324/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties and Applications of Metal Phosphates and Pyrophosphates as Proton Conductors. Materials, 2022, 15, 1292.	2.9	20
2	Exploiting the Multifunctionality of M ²⁺ /Imidazole–Etidronates for Proton Conductivity (Zn ²⁺) and Electrocatalysis (Co ²⁺ , Ni ²⁺) toward the HER, OER, and ORR. ACS Applied Materials & Interfaces, 2022, 14, 11273-11287.	8.0	8
3	Homologous alkyl side-chain diphosphonate inhibitors for the corrosion protection of carbon steels. Chemical Engineering Journal, 2021, 405, 126864.	12.7	21
4	Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs. ACS Applied Materials & amp; Interfaces, 2021, 13, 15279-15291.	8.0	7
5	Structural and proton conductivity studies of fibrous π-Ti ₂ 0(PO ₄) ₂ ·2H ₂ O: application in chitosan-based composite membranes. Dalton Transactions, 2021, 50, 7667-7677.	3.3	8
6	Synthesis and electrochemical properties of metal(<scp>ii</scp>)-carboxyethylphenylphosphinates. Dalton Transactions, 2021, 50, 6539-6548.	3.3	8
7	NH3/H2O-mediated proton conductivity and photocatalytic behaviour of Fe(ii)-hydroxyphosphonoacetate and M(ii)-substituted derivatives. Dalton Transactions, 2020, 49, 3981-3988.	3.3	9
8	Homochiral imidazolium-based dicarboxylate compounds: Structure and solution behaviour. Inorganica Chimica Acta, 2020, 513, 119923.	2.4	6
9	Assessment of ATR-FTIR spectroscopy with multivariate analysis to investigate the binding mechanisms of Ag and TiO2 nanoparticles to Chelex®-100 or Metsorb™ for the DCT technique. Analytical Methods, 2020, 12, 959-969.	2.7	11
10	Layered Lanthanide Sulfophosphonates and Their Proton Conduction Properties in Membrane Electrode Assemblies. Chemistry of Materials, 2019, 31, 9625-9634.	6.7	34
11	From light to heavy alkali metal tetraphosphonates (M = Li, Na, K, Rb, Cs): cation size-induced structural diversity and water-facilitated proton conductivity. CrystEngComm, 2018, 20, 7648-7658.	2.6	13
12	High-Throughput Synthesis of Pillared-Layered Magnesium Tetraphosphonate Coordination Polymers: Framework Interconversions and Proton Conductivity Studies. Inorganics, 2018, 6, 96.	2.7	4
13	Three-Component Copper-Phosphonate-Auxiliary Ligand Systems: Proton Conductors and Efficient Catalysts in Mild Oxidative Functionalization of Cycloalkanes. Inorganic Chemistry, 2018, 57, 10656-10666.	4.0	19
14	Structural variability in M ²⁺ 2-hydroxyphosphonoacetate moderate proton conductors. Pure and Applied Chemistry, 2017, 89, 75-87.	1.9	10
15	Synthesis and structural characterization of homochiral 2D coordination polymers of zinc and copper with conformationally flexible ditopic imidazolium-based dicarboxylate ligands. Dalton Transactions, 2017, 46, 471-482.	3.3	27
16	Zinc(<scp>ii</scp>), cobalt(<scp>ii</scp>) and manganese(<scp>ii</scp>) networks with phosphoserine ligand: synthesis, crystal structures and magnetic and proton conductivity properties. Dalton Transactions, 2017, 46, 16570-16579.	3.3	8
17	Tuning Proton Conductivity in Alkali Metal Phosphonocarboxylates by Cation Size-Induced and Water-Facilitated Proton Transfer Pathways. Chemistry of Materials, 2015, 27, 424-435.	6.7	82
18	Synthesis and structural characterization of 2-D layered copper(II) styrylphosphonate coordination polymers. Journal of Coordination Chemistry, 2014, 67, 1562-1572.	2.2	19

Rosario M P Colodrero

#	Article	IF	CITATIONS
19	Guest Molecule-Responsive Functional Calcium Phosphonate Frameworks for Tuned Proton Conductivity. Journal of the American Chemical Society, 2014, 136, 5731-5739.	13.7	206
20	Structural Variability in Multifunctional Metal Xylenediaminetetraphosphonate Hybrids. Inorganic Chemistry, 2013, 52, 8770-8783.	4.0	46
21	Multifunctional lanthanum tetraphosphonates: Flexible, ultramicroporous and proton-conducting hybrid frameworks. Dalton Transactions, 2012, 41, 4045.	3.3	85
22	Photodegradation of Phenol over a Hybrid Organo-Inorganic Material: Iron(II) Hydroxyphosphonoacetate. Journal of Physical Chemistry C, 2012, 116, 14526-14533.	3.1	13
23	Crystal engineering in confined spaces. A novel method to grow crystalline metal phosphonates in alginate gel systems. CrystEngComm, 2012, 14, 5385.	2.6	32
24	High Proton Conductivity in a Flexible, Cross-Linked, Ultramicroporous Magnesium Tetraphosphonate Hybrid Framework. Inorganic Chemistry, 2012, 51, 7689-7698.	4.0	118
25	Multifunctional Luminescent and Proton-Conducting Lanthanide Carboxyphosphonate Open-Framework Hybrids Exhibiting Crystalline-to-Amorphous-to-Crystalline Transformations. Chemistry of Materials, 2012, 24, 3780-3792.	6.7	162
26	2D Corrugated Magnesium Carboxyphosphonate Materials: Topotactic Transformations and Interlayer "Decoration―with Ammonia. Inorganic Chemistry, 2012, 51, 7889-7896.	4.0	18
27	Luminescent proton-conducting lanthanide carboxyphosphonate open-framework hybrids. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, s224-s224.	0.3	Ο
28	Common Structural Features in Calcium Hydroxyphosphonoacetates. A High-Throughput Screening. Crystal Growth and Design, 2011, 11, 1713-1722.	3.0	32
29	Crystal structures and ultramicroporosity in Mg and Ca tetraphosphonate hybrids. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C710-C711.	0.3	0
30	Divalent Metal Vinylphosphonate Layered Materials: Compositional Variability, Structural Peculiarities, Dehydration Behavior, and Photoluminescent Properties. Inorganic Chemistry, 2011, 50, 11202-11211.	4.0	25
31	Structural Mapping and Framework Interconversions in 1D, 2D, and 3D Divalent Metal <i>R,S</i> -Hydroxyphosphonoacetate Hybrids. Inorganic Chemistry, 2010, 49, 761-768.	4.0	33
32	"Breathing―in Adsorbateâ€Responsive Metal Tetraphosphonate Hybrid Materials. Chemistry - A European Journal, 2009, 15, 6612-6618.	3.3	40