Bruno Adriano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4463314/publications.pdf

Version: 2024-02-01

430442 433756 1,053 49 18 31 citations h-index g-index papers 52 52 52 856 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Breaking Limits of Remote Sensing by Deep Learning From Simulated Data for Flood and Debris-Flow Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	17
2	Brief communication: Radar images for monitoring informal urban settlements in vulnerable zones in Lima, Peru. Natural Hazards and Earth System Sciences, 2022, 22, 65-70.	1.5	4
3	A Benchmark High-Resolution GaoFen-3 SAR Dataset for Building Semantic Segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5950-5963.	2.3	17
4	Learning from multimodal and multitemporal earth observation data for building damage mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175, 132-143.	4.9	55
5	Big Earth Observation Data Processing for Disaster Damage Mapping. , 2021, , 99-118.		2
6	Tsunami hazard assessment for the central and southern pacific coast of Colombia. Coastal Engineering Journal, 2020, 62, 540-552.	0.7	2
7	Characteristics of Tsunami Fragility Functions Developed Using Different Sources of Damage Data from the 2018 Sulawesi Earthquake and Tsunami. Pure and Applied Geophysics, 2020, 177, 2437-2455.	0.8	15
8	Detecting urban changes using phase correlation and â, "1-based sparse model for early disaster response: A case study of the 2018 Sulawesi Indonesia earthquake-tsunami. Remote Sensing of Environment, 2020, 242, 111743.	4.6	29
9	A Semiautomatic Pixel-Object Method for Detecting Landslides Using Multitemporal ALOS-2 Intensity Images. Remote Sensing, 2020, 12, 561.	1.8	23
10	Damage Characterization in Urban Environments from Multitemporal Remote Sensing Datasets Built from Previous Events., 2020,,.		2
11	Tsunami analytical fragility curves for the Colombian Pacific coast: A reinforced concrete building example. Engineering Structures, 2019, 196, 109309.	2.6	22
12	Multi-Source Data Fusion Based on Ensemble Learning for Rapid Building Damage Mapping during the 2018 Sulawesi Earthquake and Tsunami in Palu, Indonesia. Remote Sensing, 2019, 11, 886.	1.8	64
13	Cross-Domain-Classification of Tsunami Damage Via Data Simulation and Residual-Network-Derived Features From Multi-Source Images. , 2019, , .		1
14	A Framework of Rapid Regional Tsunami Damage Recognition From Post-event TerraSAR-X Imagery Using Deep Neural Networks. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 43-47.	1.4	57
15	Tsunami source and inundation features around Sendai Coast, Japan, due to the November 22, 2016 Mw 6.9 Fukushima earthquake. Geoscience Letters, 2018, 5, .	1.3	10
16	An integrated method to extract collapsed buildings from satellite imagery, hazard distribution and fragility curves. International Journal of Disaster Risk Reduction, 2018, 31, 1374-1384.	1.8	17
17	Tsunami Source Inversion Using Tide Gauge and DART Tsunami Waveforms of the 2017 Mw8.2 Mexico Earthquake. Pure and Applied Geophysics, 2018, 175, 35-48.	0.8	11
18	New Insights into Multiclass Damage Classification of Tsunami-Induced Building Damage from SAR Images. Remote Sensing, 2018, 10, 2059.	1.8	24

#	Article	IF	Citations
19	Identifying Building Damage Patterns in the 2016 Meinong, Taiwan Earthquake Using Post-Event Dual-Polarimetric ALOS-2/PALSAR-2 Imagery. Journal of Disaster Research, 2018, 13, 291-302.	0.4	2
20	Damage Mapping After the 2017 Puebla Earthquake in Mexico Using High-Resolution Alos2 Palsar2 Data. , 2018, , .		1
21	Analysis of Spatio-Temporal Tsunami Source Models for Reproducing Tsunami Inundation Features. Geosciences (Switzerland), 2018, 8, 3.	1.0	7
22	Novel Unsupervised Classification of Collapsed Buildings Using Satellite Imagery, Hazard Scenarios and Fragility Functions. Remote Sensing, 2018, 10, 296.	1.8	33
23	Sequential SAR Coherence Method for the Monitoring of Buildings in Sarpole-Zahab, Iran. Remote Sensing, 2018, 10, 1255.	1.8	28
24	Building Damage Assessment in the 2015 Gorkha, Nepal, Earthquake Using Only Post-Event Dual Polarization Synthetic Aperture Radar Imagery. Earthquake Spectra, 2017, 33, 185-195.	1.6	24
25	Possible Failure Mechanism of Buildings Overturned during the 2011 Great East Japan Tsunami in the Town of Onagawa. Frontiers in Built Environment, 2017, 3, .	1.2	12
26	Object-Based Building Damage Assessment Methodology Using Only Post Event ALOS-2/PALSAR-2 Dual Polarimetric SAR Intensity Images. Journal of Disaster Research, 2017, 12, 259-271.	0.4	25
27	Machine Learning Based Building Damage Mapping from the ALOS-2/PALSAR-2 SAR Imagery: Case Study of 2016 Kumamoto Earthquake. Journal of Disaster Research, 2017, 12, 646-655.	0.4	28
28	A proposed methodology for deriving tsunami fragility functions for buildings using optimum intensity measures. Natural Hazards, 2016, 84, 1257-1285.	1.6	54
29	Understanding the Extreme Tsunami Inundation in Onagawa Town by the 2011 Tohoku Earthquake, Its Effects in Urban Structures and Coastal Facilities. Coastal Engineering Journal, 2016, 58, 1640013-1-1640013-19.	0.7	13
30	Developing a method for urban damage mapping using radar signatures of building footprint in SAR imagery: A case study after the 2013 Super Typhoon Haiyan. , 2015, , .		2
31	Developing a building damage function using SAR images and post-event data after the Typhoon Haiyan in The Philippines. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2015, 71, I_1729-I_1734.	0.0	2
32	Field survey report and satellite image interpretation of the 2013 Super Typhoon Haiyan in the Philippines. Natural Hazards and Earth System Sciences, 2015, 15, 805-816.	1.5	84
33	Recent Advances in Agent-Based Tsunami Evacuation Simulations: Case Studies in Indonesia, Thailand, Japan and Peru. Pure and Applied Geophysics, 2015, 172, 3409-3424.	0.8	72
34	Buildings damage due to the 2013 Haiyan Typhoon inferred from SAR intensity images. , 2015, , .		0
35	Reconstruction Process and Social Issues After the 1746 Earthquake and Tsunami in Peru: Past and Present Challenges After Tsunami Events. Advances in Natural and Technological Hazards Research, 2015, , 97-109.	1.1	5
36	Improving Tsunami Numerical Simulation with the Time-Dependent Building Destruction Model. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_346-I_350.	0.0	5

#	Article	lF	CITATIONS
37	Extraction of damaged areas due to the 2013 Haiyan Typhoon using ASTER data. , 2014, , .		8
38	Damage detection due to the typhoon haiyan from high-resolution SAR images. , 2014, , .		3
39	Field survey and damage inspection after the 2013 Typhoon Haiyan in The Philippines. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_1451-I_1455.	0.0	10
40	Tsunami Evacuation Simulation - Case Studies for Tsunami Mitigation at Indonesia, Thailand and Japan. , 2014, , .		3
41	Spatial Variation of Damage due to Storm Surge and Waves during Typhoon Haiyan in the Philippines. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2014, 70, I_231-I_235.	0.0	29
42	Tsunami Waveform Inversion of the 2007 Peru (<i>M_w</i> 8.1) Earthquake. Journal of Disaster Research, 2014, 9, 954-960.	0.4	10
43	Simulation of Tsunami Inundation in Central Peru from Future Megathrust Earthquake Scenarios. Journal of Disaster Research, 2014, 9, 961-967.	0.4	13
44	Scenarios of Earthquake and Tsunami Damage Probability in Callao Region, Peru Using Tsunami Fragility Functions. Journal of Disaster Research, 2014, 9, 968-975.	0.4	15
45	Development of Building Height Data in Peru from High-Resolution SAR Imagery. Journal of Disaster Research, 2014, 9, 1042-1049.	0.4	11
46	Seismic Source of 1746 Callao Earthquake from Tsunami Numerical Modeling. Journal of Disaster Research, 2013, 8, 266-273.	0.4	19
47	Tsunami Inundation Mapping in Lima, for Two Tsunami Source Scenarios. Journal of Disaster Research, 2013, 8, 274-284.	0.4	14
48	An Integrated Simulation of Tsunami Hazard and Human Evacuation in La Punta, Peru. Journal of Disaster Research, 2013, 8, 285-295.	0.4	61
49	Developing Tsunami fragility curves using remote sensing and survey data of the 2010 Chilean Tsunami in Dichato. Natural Hazards and Earth System Sciences, 2012, 12, 2689-2697.	1.5	80