Xin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4462997/publications.pdf

Version: 2024-02-01

236833 395590 1,877 35 25 33 citations h-index g-index papers 35 35 35 2296 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Robust Nickel-Based Metal–Organic Framework for Highly Efficient Methane Purification and Capture. ACS Applied Materials & Interfaces, 2022, 14, 4242-4250.	4.0	17
2	A new yttriumâ€based metal–organic framework for molecular sieving of propane from propylene with high propylene capacity. AICHE Journal, 2022, 68, .	1.8	17
3	Novel Granular Biomass-Based Carbons with Excellent C ₂ H ₆ /CH ₄ Selectivity for Recovering Light Hydrocarbons from Natural Gas. ACS Sustainable Chemistry and Engineering, 2022, 10, 5633-5642.	3.2	9
4	Adsorption Property of Starch-Based Microporous Carbon Materials with High Selectivity and Uptake for C1/C2/C3 Separation. Industrial & Engineering Chemistry Research, 2021, 60, 4668-4676.	1.8	13
5	Synthesis of novel particle rice-based carbon materials and its excellent CH4/N2 adsorption selectivity for methane enrichment from Low-rank natural gas. Chemical Engineering Journal, 2020, 384, 123388.	6.6	57
6	Room temperature synthesis of Cu(Qc)2 and its application for ethane capture from light hydrocarbons. Chemical Engineering Science, 2020, 213, 115355.	1.9	25
7	Enhancing Selective Adsorption in a Robust Pillared-Layer Metal–Organic Framework via Channel Methylation for the Recovery of C2–C3 from Natural Gas. ACS Applied Materials & Interfaces, 2020, 12, 51499-51505.	4.0	50
8	Oxygen-Selective Adsorption Property of Ultramicroporous MOF Cu(Qc) ₂ for Air Separation. Industrial & Engineering Chemistry Research, 2020, 59, 6219-6225.	1.8	18
9	Propane-selective design of zirconium-based MOFs for propylene purification. Chemical Engineering Science, 2020, 219, 115604.	1.9	20
10	Facile synthesis of ultramicroporous carbon adsorbents with ultraâ€high <scp>CH₄</scp> uptake by in situ ionic activation. AICHE Journal, 2020, 66, e16231.	1.8	39
11	Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons. Chemical Engineering Journal, 2019, 355, 679-686.	6.6	82
12	Enhanced CO ₂ Adsorption and CO ₂ /N ₂ /CH ₄ Selectivity of Novel Carbon Composites CPDA@A-Cs. Energy & Energ	2.5	28
13	Tuning secondary building unit of Cu-BTC to simultaneously enhance its CO2 selective adsorption and stability under moisture. Chemical Engineering Journal, 2019, 355, 815-821.	6.6	56
14	Postsynthetic Strategy To Prepare ACN@Cu-BTCs with Enhanced Water Vapor Stability and CO ₂ /CH ₄ Separation Selectivity. Industrial & Engineering Chemistry Research, 2018, 57, 3765-3772.	1.8	37
15	Selective Adsorptive Separation of CO ₂ /CH ₄ and CO ₂ /N ₂ by a Water Resistant Zirconium–Porphyrin Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2018, 57, 12215-12224.	1.8	48
16	Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene. Chemical Engineering Science, 2017, 162, 192-202.	1.9	92
17	Surface Modification of Twoâ€Dimensional Metal–Organic Layers Creates Biomimetic Catalytic Microenvironments for Selective Oxidation. Angewandte Chemie - International Edition, 2017, 56, 9704-9709.	7.2	155
18	Novel glucose-based adsorbents (Glc-Cs) with high CO 2 capacity and excellent CO 2 /CH 4 /N 2 adsorption selectivity. Chemical Engineering Journal, 2017, 327, 51-59.	6.6	54

#	Article	IF	CITATIONS
19	Surface Modification of Twoâ€Dimensional Metal–Organic Layers Creates Biomimetic Catalytic Microenvironments for Selective Oxidation. Angewandte Chemie, 2017, 129, 9836-9841.	1.6	38
20	A novel DOBDC-functionalized MIL-100(Fe) and its enhanced CO 2 capacity and selectivity. Chemical Engineering Journal, 2017, 321, 600-607.	6.6	36
21	Quenched breathing effect, enhanced CO2 uptake and improved CO2/CH4 selectivity of MIL-53(Cr)/graphene oxide composites. Chemical Engineering Science, 2017, 167, 98-104.	1.9	36
22	Frontispiece: Surface Modification of Twoâ€Dimensional Metal–Organic Layers Creates Biomimetic Catalytic Microenvironments for Selective Oxidation. Angewandte Chemie - International Edition, 2017, 56, .	7.2	0
23	Frontispiz: Surface Modification of Twoâ€Dimensional Metal–Organic Layers Creates Biomimetic Catalytic Microenvironments for Selective Oxidation. Angewandte Chemie, 2017, 129, .	1.6	0
24	Electrocatalytic reduction of CO ₂ to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks. Journal of Materials Chemistry A, 2017, 5, 24867-24873.	5.2	78
25	Selective Adsorption Performances of UiO-67 for Separation of Light Hydrocarbons C1, C2, and C3. Industrial & Camp; Engineering Chemistry Research, 2017, 56, 8689-8696.	1.8	63
26	Adsorption performance of MIL-100(Fe) for separation of olefin–paraffin mixtures. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 74-78.	2.7	27
27	Ultrafast room temperature synthesis of novel composites Imi@Cu-BTC with improved stability against moisture. Chemical Engineering Journal, 2017, 307, 537-543.	6.6	51
28	Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene. Chemical Engineering Science, 2016, 155, 338-347.	1.9	75
29	Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene. Chemical Engineering Science, 2016, 148, 275-281.	1.9	141
30	Graphene-Immobilized <i>fac</i> -Re(bipy)(CO) ₃ Cl for Syngas Generation from Carbon Dioxide. ACS Applied Materials & Samp; Interfaces, 2016, 8, 4192-4198.	4.0	21
31	Design, Synthesis, and Characterization of a Bifunctional Chelator with Ultrahigh Capacity for Uranium Uptake from Seawater Simulant. Industrial & Engineering Chemistry Research, 2016, 55, 4170-4178.	1.8	25
32	Enhanced separation performance of a novel composite material GrO@MIL-101 for CO2/CH4 binary mixture. Chemical Engineering Journal, 2015, 266, 339-344.	6.6	106
33	Graphene-Immobilized Monomeric Bipyridine-M $<$ sup $<$ i> $<$ i> $<$ i $><$ i $<$ + $<$ sup $>$ (M $<$ sup $><$ i> $>$ <i<math>><i$><$i$><$-(i$>$+$<$ sup$>=$) Tj ETQq1 1 0. Electrocatalytic Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18475-18479.</i<math>	784314 r 4.0	gBT /Overlo 37
34	A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone. Journal of Materials Chemistry A, 2014, 2, 4722-4730.	5.2	202
35	Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO ₂ /CH ₄ . Industrial & Engineering Chemistry Research, 2014, 53, 11176-11184.	1.8	124