Jian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4462618/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review and performance comparison of SVM- and ELM-based classifiers. Neurocomputing, 2014, 128, 507-516.	3.5	169
2	A review on extreme learning machine. Multimedia Tools and Applications, 2022, 81, 41611-41660.	2.6	143
3	Convergence analysis of online gradient method for BP neural networks. Neural Networks, 2011, 24, 91-98.	3.3	134
4	Fractional-order gradient descent learning of BP neural networks with Caputo derivative. Neural Networks, 2017, 89, 19-30.	3.3	128
5	Feature Selection for Neural Networks Using Group Lasso Regularization. IEEE Transactions on Knowledge and Data Engineering, 2020, 32, 659-673.	4.0	113
6	Application of extreme learning machine and neural networks in total organic carbon content prediction in organic shale with wire line logs. Journal of Natural Gas Science and Engineering, 2016, 33, 687-702.	2.1	100
7	Training effective deep reinforcement learning agents for real-time life-cycle production optimization. Journal of Petroleum Science and Engineering, 2022, 208, 109766.	2.1	84
8	A Novel Pruning Algorithm for Smoothing Feedforward Neural Networks Based on Group Lasso Method. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 2012-2024.	7.2	74
9	History Matching of Naturally Fractured Reservoirs Using a Deep Sparse Autoencoder. SPE Journal, 2021, 26, 1700-1721.	1.7	72
10	Feature Selection Using a Neural Network With Group Lasso Regularization and Controlled Redundancy. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32, 1110-1123.	7.2	71
11	Affine Transformation-Enhanced Multifactorial Optimization for Heterogeneous Problems. IEEE Transactions on Cybernetics, 2022, 52, 6217-6231.	6.2	60
12	Learning Optimized Structure of Neural Networks by Hidden Node Pruning With \$L_{1}\$ Regularization. IEEE Transactions on Cybernetics, 2020, 50, 1333-1346.	6.2	55
13	A recalling-enhanced recurrent neural network: Conjugate gradient learning algorithm and its convergence analysis. Information Sciences, 2020, 519, 273-288.	4.0	54
14	Batch gradient method with smoothing regularization for training of feedforward neural networks. Neural Networks, 2014, 50, 72-78.	3.3	53
15	Multifidelity Genetic Transfer: An Efficient Framework for Production Optimization. SPE Journal, 2021, 26, 1614-1635.	1.7	53
16	Efficient hierarchical surrogate-assisted differential evolution for high-dimensional expensive optimization. Information Sciences, 2021, 542, 228-246.	4.0	48
17	Unsupervised feature selection via adaptive autoencoder with redundancy control. Neural Networks, 2022, 150, 87-101.	3.3	47
18	Deterministic convergence of conjugate gradient method for feedforward neural networks. Neurocomputing, 2011, 74, 2368-2376.	3.5	45

#	Article	IF	CITATIONS
19	A novel conjugate gradient method with generalized Armijo search for efficient training of feedforward neural networks. Neurocomputing, 2018, 275, 308-316.	3.5	45
20	An Efficient Approach for Real-Time Prediction of Rate of Penetration in Offshore Drilling. Mathematical Problems in Engineering, 2016, 2016, 1-13.	0.6	44
21	Convergence analysis of BP neural networks via sparse response regularization. Applied Soft Computing Journal, 2017, 61, 354-363.	4.1	43
22	Convergence of Cyclic and Almost-Cyclic Learning With Momentum for Feedforward Neural Networks. IEEE Transactions on Neural Networks, 2011, 22, 1297-1306.	4.8	42
23	Sensitivity analysis of Takagi–Sugeno fuzzy neural network. Information Sciences, 2022, 582, 725-749.	4.0	40
24	A Cluster-Based Competitive Particle Swarm Optimizer with a Sparse Truncation Operator for Multi-Objective Optimization. Swarm and Evolutionary Computation, 2022, 71, 101083.	4.5	40
25	Computational properties and convergence analysis of BPNN for cyclic and almost cyclic learning with penalty. Neural Networks, 2012, 33, 127-135.	3.3	36
26	Convergence analyses on sparse feedforward neural networks via group lasso regularization. Information Sciences, 2017, 381, 250-269.	4.0	36
27	Weight Noise Injection-Based MLPs With Group Lasso Penalty: Asymptotic Convergence and Application to Node Pruning. IEEE Transactions on Cybernetics, 2019, 49, 4346-4364.	6.2	35
28	A radial basis function surrogate model assisted evolutionary algorithm for high-dimensional expensive optimization problems. Applied Soft Computing Journal, 2022, 116, 108353.	4.1	35
29	Nonstationary fuzzy neural network based on FCMnet clustering and a modified CG method with Armijo-type rule. Information Sciences, 2022, 608, 313-338.	4.0	35
30	Fully complex conjugate gradient-based neural networks using Wirtinger calculus framework: Deterministic convergence and its application. Neural Networks, 2019, 115, 50-64.	3.3	34
31	A global neural network learning machine: Coupled integer and fractional calculus operator with an adaptive learning scheme. Neural Networks, 2021, 143, 386-399.	3.3	32
32	A modified interval type-2 Takagi-Sugeno fuzzy neural network and its convergence analysis. Pattern Recognition, 2022, 131, 108861.	5.1	31
33	Conjugate gradient-based Takagi-Sugeno fuzzy neural network parameter identification and its convergence analysis. Neurocomputing, 2019, 364, 168-181.	3.5	30
34	Brittleness index prediction in shale gas reservoirs based on efficient network models. Journal of Natural Gas Science and Engineering, 2016, 35, 673-685.	2.1	29
35	Convergence and objective functions of noise-injected multilayer perceptrons with hidden multipliers. Neurocomputing, 2021, 452, 796-812.	3.5	29
36	A new method for rock brittleness evaluation in tight oil formation from conventional logs and petrophysical data. Journal of Petroleum Science and Engineering, 2017, 151, 169-182.	2.1	28

#	Article	IF	CITATIONS
37	Fractional-order global optimal backpropagation machine trained by an improved fractional-order steepest descent method. Frontiers of Information Technology and Electronic Engineering, 2020, 21, 809-833.	1.5	28
38	Bilateral sensitivity analysis: a better understanding of a neural network. International Journal of Machine Learning and Cybernetics, 2022, 13, 2135-2152.	2.3	27
39	Use of Overlapping Group LASSO Sparse Deep Belief Network to Discriminate Parkinson's Disease and Normal Control. Frontiers in Neuroscience, 2019, 13, 396.	1.4	24
40	Multiscale-Network Structure Inversion of Fractured Media Based on a Hierarchical-Parameterization and Data-Driven Evolutionary-Optimization Method. SPE Journal, 2020, 25, 2729-2748.	1.7	23
41	Convergence Analysis of Caputo-Type Fractional Order Complex-Valued Neural Networks. IEEE Access, 2017, 5, 14560-14571.	2.6	21
42	Convergence of a modified gradient-based learning algorithm with penalty for single-hidden-layer feed-forward networks. Neural Computing and Applications, 2020, 32, 2445-2456.	3.2	21
43	An Input Weights Dependent Complex-Valued Learning Algorithm Based on Wirtinger Calculus. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2920-2932.	5.9	19
44	Boundedness and convergence analysis of weight elimination for cyclic training of neural networks. Neural Networks, 2016, 82, 49-61.	3.3	18
45	A parallel feature selection method study for text classification. Neural Computing and Applications, 2017, 28, 513-524.	3.2	18
46	A modified gradient learning algorithm with smoothing L1/2 regularization for Takagi–Sugeno fuzzy models. Neurocomputing, 2014, 138, 229-237.	3.5	17
47	An Enhanced Fractional Least Mean Square Filter Encountering the Specific Unknown System Vector. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1912-1916.	2.2	17
48	A novel hybrid recurrent convolutional network for surrogate modeling of history matching and uncertainty quantification. Journal of Petroleum Science and Engineering, 2022, 210, 110109.	2.1	17
49	Surrogate-assisted differential evolution for production optimization with nonlinear state constraints. Journal of Petroleum Science and Engineering, 2020, 194, 107441.	2.1	15
50	Prediction of Field Saturations Using a Fully Convolutional Network Surrogate. SPE Journal, 2021, , 1-13.	1.7	15
51	A Polak-Ribière-Polyak Conjugate Gradient-Based Neuro-Fuzzy Network and its Convergence. IEEE Access, 2018, 6, 41551-41565.	2.6	14
52	A topology-based single-pool decomposition framework for large-scale global optimization. Applied Soft Computing Journal, 2020, 92, 106295.	4.1	14
53	Parallel Feature Selection Based on MapReduce. Lecture Notes in Electrical Engineering, 2014, , 299-306.	0.3	13
54	A pruning algorithm with L 1/2 regularizer for extreme learning machine. Journal of Zhejiang University: Science C, 2014, 15, 119-125.	0.7	13

#	Article	IF	CITATIONS
55	Construction and optimization of adaptive well pattern based on reservoir anisotropy and uncertainty. Journal of Petroleum Science and Engineering, 2019, 181, 106252.	2.1	12
56	Data intensive parallel feature selection method study. , 2014, , .		11
57	Relaxed conditions for convergence of batch BPAP for feedforward neural networks. Neurocomputing, 2015, 153, 174-179.	3.5	11
58	Self-adaptive multifactorial evolutionary algorithm for multitasking production optimization. Journal of Petroleum Science and Engineering, 2021, 205, 108900.	2.1	11
59	A double-model differential evolution for constrained waterflooding production optimization. Journal of Petroleum Science and Engineering, 2021, 207, 109059.	2.1	10
60	Fractional Approximation of Broad Learning System. IEEE Transactions on Cybernetics, 2024, 54, 811-824.	6.2	10
61	Fractional-Order Retinex for Adaptive Contrast Enhancement of Under-Exposed Traffic Images. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 149-159.	2.6	8
62	A modified conjugate gradient-based Elman neural network. Cognitive Systems Research, 2021, 68, 62-72.	1.9	8
63	A distributed surrogate system assisted differential evolutionary algorithm for computationally expensive history matching problems. Journal of Petroleum Science and Engineering, 2022, 210, 110029.	2.1	7
64	An Improved Ant Colony Optimization Algorithm Based on Fractional Order Memory for Traveling Salesman Problems. , 2019, , .		6
65	A Caputo-Type Fractional-Order Gradient Descent Learning of BP Neural Networks. Lecture Notes in Computer Science, 2017, , 547-554.	1.0	6
66	Boundedness and convergence of MPN for cyclic and almost cyclic learning with penalty. , 2011, , .		5
67	Support Vector Machine–Based Model for 2.5–5.2 GHz CMOS Power Amplifier. Micromachines, 2022, 13, 1012.	1.4	5
68	A Slime Mold Fractional-Order Ant Colony Optimization Algorithm forÂTravelling Salesman Problems. Lecture Notes in Computer Science, 2021, , 322-332.	1.0	4
69	Convergence Analysis of Multilayer Feedforward Networks Trained with Penalty Terms: A Review. MEDICRIT Revista De Medicina CrÃtica, 2015, 7, 89-103.	0.1	3
70	Image steganalysis based on convolutional neural network and feature selection. Concurrency Computation Practice and Experience, 2020, 32, e5469.	1.4	3
71	Structure Optimization of Neural Networks with L <inf>1</inf> Regularization on Gates. , 2018, , .		2
72	An Efficient Algorithm for Complex-Valued Neural Networks Through Training Input Weights. Lecture Notes in Computer Science, 2017, , 150-159.	1.0	2

#	Article	IF	CITATIONS
73	Convergence Analysis of Inverse Iterative Neural Networks with L2 Penalty. MEDICRIT Revista De Medicina CrÃtica, 2016, 8, 85-98.	0.1	1
74	A New Parameter Identification Method for Type-1 TS Fuzzy Neural Network. Lecture Notes in Computer Science, 2018, , 200-207.	1.0	1
75	Unsupervised Feature Selection Using RBF Autoencoder. Lecture Notes in Computer Science, 2019, , 48-57.	1.0	1
76	Boundedness of Weight Elimination for BP Neural Networks. Lecture Notes in Computer Science, 2014, , 155-165.	1.0	1
77	A Conjugate Gradient-Based Efficient Algorithm for Training Single-Hidden-Layer Neural Networks. Lecture Notes in Computer Science, 2016, , 470-478.	1.0	0
78	Computational Properties of Cyclic and Almost-Cyclic Learning with Momentum for Feedforward Neural Networks. Lecture Notes in Computer Science, 2012, , 545-554.	1.0	0
79	An Improved Conjugate Gradient Neural Networks Based on a Generalized Armijo Search Method. Lecture Notes in Computer Science, 2017, , 131-139.	1.0	0
80	Fully Complex-Valued Wirtinger Conjugate Neural Networks with Generalized Armijo Search. Lecture Notes in Computer Science, 2018, , 123-133.	1.0	0
81	Redundancy-Controlled Feature Selection for Fuzzy Neural Networks. , 2021, , .		0