Clotilde Marin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4462322/publications.pdf Version: 2024-02-01

CLOTH DE MARIN

#	Article	IF	CITATIONS
1	5-Nitroindazole derivatives as potential therapeutic alternatives against Acanthamoeba castellanii. Acta Tropica, 2022, 232, 106538.	0.9	2
2	An Updated View of the <i>Trypanosoma cruzi</i> Life Cycle: Intervention Points for an Effective Treatment. ACS Infectious Diseases, 2022, 8, 1107-1115.	1.8	24
3	Selenium Derivatives as Promising Therapy for Chagas Disease: <i>In Vitro</i> and <i>In Vivo</i> Studies. ACS Infectious Diseases, 2021, 7, 1727-1738.	1.8	13
4	Library of Selenocyanate and Diselenide Derivatives as In Vivo Antichagasic Compounds Targeting Trypanosoma cruzi Mitochondrion. Pharmaceuticals, 2021, 14, 419.	1.7	10
5	<i>In vitro</i> anti- <i>Acanthamoeba</i> activity of flavonoid glycosides isolated from <i>Delphinium gracile</i> , <i>D. staphisagria</i> , <i>Consolida oliveriana</i> and <i>Aconitum napellus</i> . Parasitology, 2021, 148, 1392-1400.	0.7	3
6	Antimicrobial Activity of the Circular Bacteriocin AS-48 against Clinical Multidrug-Resistant Staphylococcus aureus. Antibiotics, 2021, 10, 925.	1.5	5
7	In vitro Leishmanicidal and Trypanosomicidal Properties of Imidazoleâ€Containing Azine and Benzoazine Derivatives. ChemMedChem, 2021, 16, 3600-3614.	1.6	1
8	Heterocyclic Diamines with Leishmanicidal Activity. ACS Infectious Diseases, 2021, 7, 3168-3181.	1.8	5
9	The Role of Key Amino Acids in the Antimicrobial Mechanism of a Bacteriocin Model Revealed by Molecular Simulations. Journal of Chemical Information and Modeling, 2021, 61, 6066-6078.	2.5	4
10	Role of maltodextrin and inulin as encapsulating agents on the protection of oleuropein during in vitro gastrointestinal digestion. Food Chemistry, 2020, 310, 125976.	4.2	36
11	In Vivo Biological Evaluation of a Synthetic Royleanone Derivative as a Promising Fast-Acting Trypanocidal Agent by Inducing Mitochondrial-Dependent Necrosis. Journal of Natural Products, 2020, 83, 3571-3583.	1.5	6
12	Synergy of the Bacteriocin AS-48 and Antibiotics against Uropathogenic Enterococci. Antibiotics, 2020, 9, 567.	1.5	13
13	Assessing the effectiveness of AS-48 in experimental mice models of Chagas' disease. Journal of Antimicrobial Chemotherapy, 2020, 75, 1537-1545.	1.3	14
14	Repositioning of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts for Chagas disease treatment: Trypanosoma cruzi cell death involving mitochondrial membrane depolarisation and Fe-SOD inhibition. Parasitology Research, 2020, 119, 2943-2954.	0.6	4
15	In vitro evaluation of leishmanicidal properties of a new family of monodimensional coordination polymers based on diclofenac ligand. Polyhedron, 2020, 184, 114570.	1.0	7
16	Rational modification of Mannich base-type derivatives as novel antichagasic compounds: Synthesis, in vitro and in vivo evaluation. Bioorganic and Medicinal Chemistry, 2019, 27, 3902-3917.	1.4	17
17	Preclinical studies of toxicity and safety of the AS-48 bacteriocin. Journal of Advanced Research, 2019, 20, 129-139.	4.4	39
18	Subchronic toxicity study in BALBc mice of enterocin AS-48, an anti-microbial peptide produced by Enterococcus faecalis UGRA10. Food and Chemical Toxicology, 2019, 132, 110667.	1.8	14

#	Article	IF	CITATIONS
19	Antichagasic profile of a Series of Mannich Baseâ€Type Derivatives: Design, Synthesis, <i>inâ€vitro</i> Evaluation, and Computational Studies Involving Iron Superoxide Dismutase. ChemistrySelect, 2019, 4, 8112-8121.	0.7	3
20	In vitro assessment of 3-alkoxy-5-nitroindazole-derived ethylamines and related compounds as potential antileishmanial drugs. Bioorganic Chemistry, 2019, 92, 103274.	2.0	4
21	Synthesis and biological evaluation of new long-chain squaramides as anti-chagasic agents in the BALB/c mouse model. Bioorganic and Medicinal Chemistry, 2019, 27, 865-879.	1.4	11
22	Insights into Chagas treatment based on the potential of bacteriocin AS-48. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 10, 1-8.	1.4	19
23	New polyamine drugs as more effective antichagas agents than benznidazole in both the acute and chronic phases. European Journal of Medicinal Chemistry, 2019, 164, 27-46.	2.6	14
24	Effective Tetradentate Compound Complexes against Leishmania spp. that Act on Critical Enzymatic Pathways of These Parasites. Molecules, 2019, 24, 134.	1.7	4
25	A step towards development of promising trypanocidal agents: Synthesis, characterization and inÂvitro biological evaluation of ferrocenyl Mannich base-type derivatives. European Journal of Medicinal Chemistry, 2019, 163, 569-582.	2.6	11
26	Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chemistry, 2019, 279, 40-48.	4.2	69
27	Autophagic-related cell death of Trypanosoma brucei induced by bacteriocin AS-48. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 203-212.	1.4	27
28	Assessing in vitro digestibility of food biopreservative AS-48. Food Chemistry, 2018, 246, 249-257.	4.2	9
29	LAB Bacteriocins Controlling the Food Isolated (Drug-Resistant) Staphylococci. Frontiers in Microbiology, 2018, 9, 1143.	1.5	31
30	Synergy between Circular Bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	32
31	Synthesis and Biological in vitro and in vivo Evaluation of 2â€(5â€Nitroindazolâ€1â€yl)ethylamines and Related Compounds as Potential Therapeutic Alternatives for Chagas Disease. ChemMedChem, 2018, 13, 2104-2118.	1.6	14
32	Control of Propionibacterium acnes by natural antimicrobial substances: Role of theÂbacteriocin AS-48 and lysozyme. Scientific Reports, 2018, 8, 11766.	1.6	22
33	Second Generation of Mannich Base-Type Derivatives with <i>in Vivo</i> Activity against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2018, 61, 5643-5663.	2.9	32
34	Tetradentate polyamines as efficient metallodrugs for Chagas disease treatment in murine model. Journal of Chemotherapy, 2017, 29, 83-93.	0.7	5
35	Antitrypanosomatid activity of flavonoid glycosides isolated from Delphinium gracile , D. staphisagria , Consolida oliveriana and from Aconitum napellus subsp. Lusitanicum. Phytochemistry Letters, 2017, 19, 196-209.	0.6	13
36	Synthesis and in vitro leishmanicidal activity of novel [1,2,3]triazolo[1,5-a]pyridine salts. RSC Advances, 2017, 7, 15715-15726.	1.7	8

#	Article	IF	CITATIONS
37	Enterocin AS-48 as Evidence for the Use of Bacteriocins as New Leishmanicidal Agents. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	55
38	Library of Seleno-Compounds as Novel Agents against Leishmania Species. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	27
39	Simple dialkyl pyrazole-3,5-dicarboxylates show <i>in vitro</i> and <i>in vivo</i> activity against disease-causing trypanosomatids. Parasitology, 2017, 144, 1133-1143.	0.7	13
40	<i>In vitro</i> antileishmanial activity and iron superoxide dismutase inhibition of arylamine Mannich base derivatives. Parasitology, 2017, 144, 1783-1790.	0.7	11
41	Optimization of genotypic and biochemical methods to profile P. acnes isolates from a patient population. Journal of Microbiological Methods, 2017, 141, 17-24.	0.7	5
42	Effective anti-leishmanial activity of minimalist squaramide-based compounds. Experimental Parasitology, 2016, 170, 36-49.	0.5	11
43	In Vitro and in Vivo Anti-Trypanosoma cruziActivity of New Arylamine Mannich Base-Type Derivatives. Journal of Medicinal Chemistry, 2016, 59, 10929-10945.	2.9	30
44	Purification of a Fe-SOD excreted by Leishmania braziliensis for specific antibodies detection in Mexican human sera: Cutting-edge the knowledge. Parasite Epidemiology and Control, 2016, 1, 90-97.	0.6	1
45	Diagnosis of Congenital Chagas Disease Using an Iron Superoxide Dismutase Excreted as Antigen, in Mothers and Their Children During the First Year of Life. Pediatric Infectious Disease Journal, 2016, 35, 739-743.	1.1	1
46	In vitro antileishmanial activity of aza-scorpiand macrocycles. Inhibition of the antioxidant enzyme iron superoxide dismutase. RSC Advances, 2016, 6, 17446-17455.	1.7	13
47	InÂvitro and inÂvivo identification of tetradentated polyamine complexes as highly efficient metallodrugs against Trypanosoma cruzi. Experimental Parasitology, 2016, 164, 20-30.	0.5	14
48	Imidazole-containing phthalazine derivatives inhibit Fe-SOD performance in <i>Leishmania</i> species and are active <i>in vitro</i> against visceral and mucosal leishmaniasis. Parasitology, 2015, 142, 1115-1129.	0.7	16
49	The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity. Journal of Structural Biology, 2015, 190, 162-172.	1.3	40
50	In vitro leishmanicidal activity of 1,3-disubstituted 5-nitroindazoles. Acta Tropica, 2015, 148, 170-178.	0.9	15
51	An inÂvitro iron superoxide dismutase inhibitor decreases the parasitemia levels of Trypanosoma cruzi in BALB/c mouse model during acute phase. International Journal for Parasitology: Drugs and Drug Resistance, 2015, 5, 110-116.	1.4	16
52	Synthesis and evaluation of inÂvitro and inÂvivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. European Journal of Medicinal Chemistry, 2015, 106, 106-119.	2.6	23
53	<i>In vitro</i> leishmanicidal activity of pyrazole-containing polyamine macrocycles which inhibit the Fe-SOD enzyme of <i>Leishmania infantum</i> and <i>Leishmania braziliensis</i> species. Parasitology, 2014, 141, 1031-1043.	0.7	15
54	Excreted Leishmania peruviana and Leishmania amazonensis iron–superoxide dismutase purification: Specific antibody detection in Colombian patients with cutaneous leishmaniasis. Free Radical Biology and Medicine, 2014, 69, 26-34.	1.3	6

#	Article	IF	CITATIONS
55	Synthetic single and double aza-scorpiand macrocycles acting as inhibitors of the antioxidant enzymes iron superoxide dismutase and trypanothione reductase in Trypanosoma cruzi with promising results in a murine model. RSC Advances, 2014, 4, 65108-65120.	1.7	19
56	Specific primers design based on the superoxide dismutase b gene for Trypanosoma cruzi as a screening tool: Validation method using strains from Colombia classified according to their discrete typing unit. Asian Pacific Journal of Tropical Medicine, 2014, 7, 854-859.	0.4	4
57	Synthesis and Biological Evaluation of <i>N</i> , <i>N</i> ′-Squaramides with High in Vivo Efficacy and Low Toxicity: Toward a Low-Cost Drug against Chagas Disease. Journal of Medicinal Chemistry, 2014, 57, 987-999.	2.9	53
58	Triazolopyrimidine compounds containing first-row transition metals and their activity against the neglected infectious Chagas disease and leishmaniasis. European Journal of Medicinal Chemistry, 2014, 85, 526-534.	2.6	54
59	Anti-Trypanosoma cruzi antibody detection in eastern Andalusia (Spain). Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 165-172.	0.7	7
60	Lanthanide complexes containing 5-methyl-1,2,4-triazolo[1,5- a] pyrimidin-7(4 H)-one and their therapeutic potential to fight leishmaniasis and Chagas disease. Journal of Inorganic Biochemistry, 2014, 138, 39-46.	1.5	28
61	New perspectives on the synthesis and antichagasic activity of 3-alkoxy-1-alkyl-5-nitroindazoles. European Journal of Medicinal Chemistry, 2014, 74, 124-134.	2.6	22
62	Seroprevalence of Antibodies Against the Excreted Antigen Superoxide Dismutase by <i>Trypanosoma Cruzi</i> in Dogs From the Yucatan Peninsula (Mexico). Zoonoses and Public Health, 2013, 60, 277-283.	0.9	14
63	Scorpiand-like azamacrocycles prevent the chronic establishment of Trypanosoma cruzi in a murine model. European Journal of Medicinal Chemistry, 2013, 70, 189-198.	2.6	23
64	Leishmania infantum secreted iron superoxide dismutase purification and its application to the diagnosis of canine Leishmaniasis. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 499-506.	0.7	14
65	InÂvitro activity of scorpiand-like azamacrocycle derivatives in promastigotes and intracellular amastigotes of Leishmania infantum and Leishmania braziliensis. European Journal of Medicinal Chemistry, 2013, 62, 466-477.	2.6	28
66	Discovering the Bacterial Circular Proteins: Bacteriocins, Cyanobactins, and Pilins. Journal of Biological Chemistry, 2012, 287, 27007-27013.	1.6	46
67	In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against Leishmania infantum and Leishmania braziliensis species. Journal of Antimicrobial Chemotherapy, 2012, 67, 387-397.	1.3	65
68	Detection of different Leishmania spp. and Trypanosoma cruzi antibodies in cats from the Yucatan Peninsula (Mexico) using an iron superoxide dismutase excreted as antigen. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35, 469-476.	0.7	28
69	Prevalence of antibodies against three species of Leishmania (L. mexicana, L. braziliensis, L. infantum) and possible associated factors in dogs from Mérida, YucatĂ¡n, Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2012, 106, 252-258.	0.7	20
70	In Vitro and In Vivo Studies of the Trypanocidal Activity of Four Terpenoid Derivatives against Trypanosoma cruzi. American Journal of Tropical Medicine and Hygiene, 2012, 87, 481-488.	0.6	18
71	Phthalazine Derivatives Containing Imidazole Rings Behave as Fe-SOD Inhibitors and Show Remarkable Anti-T. cruziActivity in Immunodeficient-Mouse Mode of Infection. Journal of Medicinal Chemistry, 2012, 55, 9900-9913.	2.9	41
72	In Vitro and in Vivo Trypanosomicidal Activity of Pyrazole-Containing Macrocyclic and Macrobicyclic Polyamines: Their Action on Acute and Chronic Phases of Chagas Disease. Journal of Medicinal Chemistry, 2012, 55, 4231-4243.	2.9	30

#	Article	IF	CITATIONS
73	Taiwaniaquinoid and abietane quinone derivatives with trypanocidal activity against T. cruzi and Leishmania spp Parasitology International, 2012, 61, 405-413.	0.6	17
74	Leishmanicidal Activity of Nine Novel Flavonoids from <i>Delphinium staphisagria</i> . Scientific World Journal, The, 2012, 2012, 1-10.	0.8	26
75	<i>Trypanosoma cruzi</i> : Seroprevalence Detection in Suburban Population of Santiago de QuerA©taro (Mexico). Scientific World Journal, The, 2012, 2012, 1-7.	0.8	19
76	In vitro evaluation of new terpenoid derivatives against Leishmania infantum and Leishmania braziliensis. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 370-376.	0.8	14
77	<i>Leishmania</i> spp. Epidemiology of Canine Leishmaniasis in the Yucatan Peninsula. Scientific World Journal, The, 2012, 2012, 1-10.	0.8	17
78	Structural consequences of the introduction of 2,2′-bipyrimidine as auxiliary ligand in triazolopyrimidine-based transition metal complexes. In vitro antiparasitic activity. Polyhedron, 2012, 33, 137-144.	1.0	27
79	In vitro anti-leishmania evaluation of nickel complexes with a triazolopyrimidine derivative against Leishmania infantum and Leishmania braziliensis. Journal of Inorganic Biochemistry, 2012, 112, 1-9.	1.5	44
80	<i>In Vivo</i> Trypanosomicidal Activity of Imidazole- or Pyrazole-Based Benzo[<i>g</i>]phthalazine Derivatives against Acute and Chronic Phases of Chagas Disease. Journal of Medicinal Chemistry, 2011, 54, 970-979.	2.9	48
81	In Vitro and in Vivo Trypanocidal Activity of Flavonoids from <i>Delphinium staphisagria</i> against Chagas Disease. Journal of Natural Products, 2011, 74, 744-750.	1.5	63
82	An Iron-Superoxide Dismutase Antigen-Based Serological Screening of Dogs Indicates Their Potential Role in the Transmission of Cutaneous Leishmaniasis and Trypanosomiasis in Yucatan, Mexico. Vector-Borne and Zoonotic Diseases, 2011, 11, 815-821.	0.6	28
83	Expression of linear permutated variants from circular enterocin AS-48. Biochimie, 2011, 93, 549-555.	1.3	15
84	Are Bacteriocins Underexploited? NOVEL Applications for OLD Antimicrobials. Current Pharmaceutical Biotechnology, 2011, 12, 1205-1220.	0.9	78
85	AS-48 bacteriocin: close to perfection. Cellular and Molecular Life Sciences, 2011, 68, 2845-2857.	2.4	78
86	In vitro and in vivo antiparasital activity against Trypanosoma cruzi of three novel 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one-based complexes. Journal of Inorganic Biochemistry, 2011, 105, 770-776.	1.5	43
87	Biological activity of three novel complexes with the ligand 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one against Leishmania spp Journal of Antimicrobial Chemotherapy, 2011, 66, 813-819.	1.3	35
88	Enzyme-linked immunosorbent assay with purified Trypanosoma cruzi excreted superoxide dismutase. Clinical Biochemistry, 2010, 43, 1257-1264.	0.8	12
89	In Vitro and in Vivo Trypanocidal Evaluation of Nickel Complexes with an Azapurine Derivative against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2010, 53, 6964-6972.	2.9	25
90	Copper (II) Complexes of [1,2,4]Triazolo [1,5-a]Pyrimidine Derivatives as Potential Anti-Parasitic Agents. Drug Metabolism Letters, 2009, 3, 35-44.	0.5	42

#	Article	IF	CITATIONS
91	Seroprevalence to Trypanosoma cruzi in rural communities of the state of Querétaro (Mexico). Clinical Biochemistry, 2009, 42, 12-16.	0.8	8
92	Large differences in the genome organization of different plant Trypanosomatid parasites (Phytomonas spp.) reveal wide evolutionary divergences between taxa. Infection, Genetics and Evolution, 2009, 9, 235-240.	1.0	6
93	Antileishmaniasis Activity of Flavonoids from <i>Consolida oliveriana</i> . Journal of Natural Products, 2009, 72, 1069-1074.	1.5	60
94	Enzyme-linked Immunosorbent Assay for Superoxide Dismutase–Excreted Antigen in Diagnosis of Sylvatic and Andean Cutaneous Leishmaniasis of Peru. American Journal of Tropical Medicine and Hygiene, 2009, 80, 55-60.	0.6	17
95	Enzyme-linked immunosorbent assay for superoxide dismutase-excreted antigen in diagnosis of sylvatic and Andean cutaneous leishmaniasis of Peru. American Journal of Tropical Medicine and Hygiene, 2009, 80, 55-60.	0.6	6
96	Natural infection and distribution of triatomines (Hemiptera: Reduviidae) in the state of Querétaro, Mexico. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008, 102, 833-838.	0.7	24
97	Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiology Reviews, 2008, 32, 2-22.	3.9	138
98	First complete chromosomal organization of a protozoan plant parasite (Phytomonas spp.). Genomics, 2008, 91, 88-93.	1.3	6
99	Purification and biochemical characterization of four iron superoxide dismutases in Trypanosoma cruzi. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 271-276.	0.8	30
100	Epidemiology of American trypanosomiasis in northern Peru. Annals of Tropical Medicine and Parasitology, 2007, 101, 643-648.	1.6	9
101	More productive in vitro culture of Cryptosporidium parvum for better study of the intra- and extracellular phases. Memorias Do Instituto Oswaldo Cruz, 2007, 102, 567-571.	0.8	8
102	Identification of New WorldLeishmaniaspecies from Peru by biochemical techniques and multiplex PCR assay. FEMS Microbiology Letters, 2007, 267, 9-16.	0.7	11
103	Herpetomonas spp. isolated from tomato fruits (Lycopersicon esculentum) in southern Spain. Experimental Parasitology, 2007, 116, 88-90.	0.5	10
104	The use of an excreted superoxide dismutase in an ELISA and Western blotting for the diagnosis of Leishmania (Leishmania) infantum naturally infected dogs. Parasitology Research, 2007, 101, 801-808.	0.6	17
105	Characterization of Antimicrobial Substances Produced by Enterococcus faecalis MRR 10-3, Isolated from the Uropygial Gland of the Hoopoe (Upupa epops). Applied and Environmental Microbiology, 2006, 72, 4245-4249.	1.4	112
106	Identification of excreted iron superoxide dismutase for the diagnosis of Phtytomonas. Memorias Do Instituto Oswaldo Cruz, 2006, 101, 649-654.	0.8	8
107	Identification and biochemical characterization of Leishmania strains isolated in Peru, Mexico, and Spain. Experimental Parasitology, 2006, 112, 44-51.	0.5	8
108	Diterpenoid Alkaloid Derivatives as Potential Chemotherapeutic Agents in American Trypanosomiasis. Pharmacology, 2006, 76, 123-128.	0.9	16

#	Article	IF	CITATIONS
109	Control of Listeria monocytogenes in model sausages by enterocin AS-48. International Journal of Food Microbiology, 2005, 103, 179-190.	2.1	95
110	Therapeutic Potential of New Pt(II) and Ru(III) Triazole-Pyrimidine Complexes against <i>Leishmania donovani</i> . Pharmacology, 2005, 73, 41-48.	0.9	30
111	In vitro activity of C20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum. International Journal of Antimicrobial Agents, 2005, 25, 136-141.	1.1	96
112	Extracellular like-gregarine stages of Cryptosporidium parvum. Acta Tropica, 2005, 95, 74-78.	0.9	58
113	USE OF AN IRON SUPEROXIDE DISMUTASE EXCRETED BY TRYPANOSOMA CRUZI IN THE DIAGNOSIS OF CHAGAS DISEASE: SEROPREVALENCE IN RURAL ZONES OF THE STATE OF QUERETARO, MEXICO. American Journal of Tropical Medicine and Hygiene, 2005, 73, 510-516.	0.6	35
114	Activities of Pt(II) and Ru(III) Triazole-Pyrimidine Complexes against <i>Trypanosoma cruzi</i> and <i>T. brucei brucei</i> . Pharmacology, 2004, 70, 83-90.	0.9	17
115	Biochemical characterization of new strains of Trypanosoma cruzi and T. rangeli isolates from Peru and Mexico. Parasitology Research, 2004, 94, 294-300.	0.6	4
116	Phytomonas iron superoxide dismutase: a possible molecular marker. FEMS Microbiology Letters, 2004, 234, 69-74.	0.7	12
117	Peptide AS-48: Prototype of a New Class of Cyclic Bacteriocins. Current Protein and Peptide Science, 2004, 5, 399-416.	0.7	169
118	Purification and characterization of two iron superoxide dismutases ofPhytomonassp. isolated fromEuphorbia characias(plant trypanosomatids). Parasitology, 2004, 129, 79-86.	0.7	6
119	Cytotoxicity of three new triazolo-pyrimidine derivatives against the plant trypanosomatid: Phytomonas sp. isolated from Euphorbia characias. Memorias Do Instituto Oswaldo Cruz, 2004, 99, 651-656.	0.8	21
120	In vitro culture and biochemical characterization of six trypanosome isolates from Peru and Brazil. Experimental Parasitology, 2002, 102, 23-29.	0.5	8
121	Activity of Pt(II) and Ru(III) Triazolopyrimidine Complexes Against Parasites of the Genus Leishmania, Trypanosomas and Phytomonas. Metal-Based Drugs, 2001, 8, 119-124.	3.8	19
122	Phytomonas spp: superoxide dismutase in plant trypanosomes. Molecular and Biochemical Parasitology, 2001, 115, 123-127.	0.5	9
123	Biochemical characterization of a trypanosomatid isolated from the plant Amaranthus retroflexus. Memorias Do Instituto Oswaldo Cruz, 2000, 95, 641-647.	0.8	3