William L Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4462315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Have western USA fire suppression and megafire active management approaches become a contemporary Sisyphus?. Biological Conservation, 2022, 268, 109499.	1.9	17
2	Restoration of forest resilience to fire from old trees is possible across a large Colorado dryâ€forest landscape by 2060, but only under the Paris 1.5℃ goal. Global Change Biology, 2021, 27, 4074-4095.	4.2	9
3	Variable Forest Structure and Fire Reconstructed Across Historical Ponderosa Pine and Mixed Conifer Landscapes of the San Juan Mountains, Colorado. Land, 2020, 9, 3.	1.2	5
4	Estimating historical forest density from landâ€survey data: Response. Ecological Applications, 2019, 29, e02017.	1.8	2
5	Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States. Ecological Applications, 2018, 28, 284-290.	1.8	21
6	Improving the use of early timber inventories in reconstructing historical dry forests and fire in the western United States: Reply. Ecosphere, 2018, 9, e02325.	1.0	4
7	Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Landscapes of the San Juan Mountains, Colorado, USA, from Multiple Sources. Fire, 2018, 1, 23.	1.2	9
8	Transitioning western U.S. dry forests to limited committed warming with betâ€hedging and natural disturbances. Ecosphere, 2018, 9, e02288.	1.0	16
9	Improving the use of early timber inventories in reconstructing historical dry forests and fire in the western United States. Ecosphere, 2017, 8, e01935.	1.0	16
10	Accommodating Mixed-Severity Fire to Restore and Maintain Ecosystem Integrity with a Focus on the Sierra Nevada of California, USA. Fire Ecology, 2017, 13, 148-171.	1.1	29
11	Restoring and managing low-severity fire in dry-forest landscapes of the western USA. PLoS ONE, 2017, 12, e0172288.	1.1	18
12	Areas of Agreement and Disagreement Regarding Ponderosa Pine and Mixed Conifer Forest Fire Regimes: A Dialogue with Stevens et al PLoS ONE, 2016, 11, e0154579.	1.1	12
13	Sequentially contingent fires, droughts and pluvials structured a historical dry forest landscape and suggest future contingencies. Journal of Vegetation Science, 2015, 26, 697-710.	1.1	15
14	Bet-hedging dry-forest resilience to climate-change threats in the western USA based on historical forest structure. Frontiers in Ecology and Evolution, 2015, 2, .	1.1	18
15	Historical Northern spotted owl habitat and old-growth dry forests maintained by mixed-severity wildfires. Landscape Ecology, 2015, 30, 655-666.	1.9	29
16	Setting the Stage for Mixed- and High-Severity Fire. , 2015, , 3-22.		5
17	Flight of the Phoenix. , 2015, , 372-396.		1
18	Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?. PLoS ONE, 2015, 10, e0136147.	1.1	31

William L Baker

#	Article	IF	CITATIONS
19	Modern calibration and historical testing of small-area, fire-interval reconstruction methods. International Journal of Wildland Fire, 2014, 23, 58.	1.0	6
20	Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America. PLoS ONE, 2014, 9, e87852.	1.1	130
21	Historical forest structure and fire in Sierran mixed-conifer forests reconstructed from General Land Office survey data. Ecosphere, 2014, 5, art79.	1.0	63
22	Highâ€severity fire corroborated in historical dry forests of the western <scp>U</scp> nited <scp>S</scp> tates: response to <scp>F</scp> ulé <i>et al</i> Global Ecology and Biogeography, 2014, 23, 831-835.	2.7	19
23	Variability of historical forest structure and fire across ponderosa pine landscapes of the Coconino Plateau and south rim of Grand Canyon National Park, Arizona, USA. Landscape Ecology, 2013, 28, 297-310.	1.9	18
24	Fire-history implications of fire scarring. Canadian Journal of Forest Research, 2013, 43, 951-962.	0.8	13
25	Fire regimes of quaking aspen in the Mountain West. Forest Ecology and Management, 2013, 299, 22-34.	1.4	58
26	Historical fire in sagebrush landscapes of the Gunnison sage-grouse range from land-survey records. Journal of Arid Environments, 2013, 98, 1-9.	1.2	7
27	Historical fire regimes, reconstructed from landâ€survey data, led to complexity and fluctuation in sagebrush landscapes. Ecological Applications, 2013, 23, 546-564.	1.8	67
28	Is Wildland Fire Increasing in Sagebrush Landscapes of the Western United States?. Annals of the American Association of Geographers, 2013, 103, 5-19.	3.0	27
29	Northern Colorado Plateau piñonâ€juniper woodland decline over the past century. Ecosphere, 2013, 4, 1-30.	1.0	9
30	Comparison of the Higher-Severity Fire Regime in Historical (A.D. 1800s) and Modern (A.D. 1984–2009) Montane Forests Across 624,156Âha of the Colorado Front Range. Ecosystems, 2012, 15, 832-847.	1.6	22
31	Implications of spatially extensive historical data from surveys for restoring dry forests of Oregon's eastern Cascades. Ecosphere, 2012, 3, 1-39.	1.0	50
32	Spatially extensive reconstructions show variableâ€severity fire and heterogeneous structure in historical western United States dry forests. Global Ecology and Biogeography, 2012, 21, 1042-1052.	2.7	105
33	Testing the accuracy of new methods for reconstructing historical structure of forest landscapes using GLO survey data. Ecological Monographs, 2011, 81, 63-88.	2.4	40
34	More omprehensive Recovery Actions for Northern Spotted Owls in Dry Forests: Reply to Spies et al Conservation Biology, 2010, 24, 334-337.	2.4	18
35	Bias and error in using survey records for ponderosa pine landscape restoration. Journal of Biogeography, 2010, 37, 707-721.	1.4	29
36	Historical and Modern Disturbance Regimes, Stand Structures, and Landscape Dynamics in Piñon–Juniper Vegetation of the Western United States. Rangeland Ecology and Management, 2009, 62, 203-222.	1.1	285

WILLIAM L BAKER

#	Article	IF	CITATIONS
37	Overestimation of Fire Risk in the Northern Spotted Owl Recovery Plan. Conservation Biology, 2009, 23, 1314-1319.	2.4	47
38	Historical fire and multidecadal drought as context for piñon–juniper woodland restoration in western Colorado. Ecological Applications, 2009, 19, 1231-1245.	1.8	40
39	Fire Probability, Fuel Treatment Effectiveness and Ecological Tradeoffs in Western U.S. Public Forests. The Open Forest Science Journal, 2008, 1, 1-7.	0.9	35
40	Fire, fuels and restoration of ponderosa pine?Douglas fir forests in the Rocky Mountains, USA. Journal of Biogeography, 2007, 34, 251-269.	1.4	99
41	A century of vegetation change in the San Juan Mountains, Colorado: An analysis using repeat photography. Forest Ecology and Management, 2006, 228, 251-262.	1.4	76
42	Fire history in ponderosa pine landscapes of Grand Canyon National Park: is it reliable enough for management and restoration?. International Journal of Wildland Fire, 2006, 15, 433.	1.0	22
43	Accurate estimation of mean fire interval for managing fire. International Journal of Wildland Fire, 2006, 15, 489.	1.0	11
44	Reconstructing Landscape-scale Tree Invasion Using Survey Notes in the Medicine Bow Mountains, Wyoming, USA. Landscape Ecology, 2006, 21, 243-258.	1.9	18
45	A landscape model quantifies error in reconstructing fire history from scars. Landscape Ecology, 2006, 21, 735-745.	1.9	14
46	Managing fire-prone forests in the western United States. Frontiers in Ecology and the Environment, 2006, 4, 481-487.	1.9	249
47	Fire and Restoration of Sagebrush Ecosystems. Wildlife Society Bulletin, 2006, 34, 177-185.	1.6	183
48	Quaking aspen (<i>Populus tremuloides</i> Michx.) at treeline: a century of change in the San Juan Mountains, Colorado, USA. Journal of Biogeography, 2004, 31, 733-745.	1.4	63
49	A fire history from tree rings in a high-elevation forest of Rocky Mountain National Park. Canadian Journal of Forest Research, 2004, 34, 1259-1273.	0.8	73
50	Fire and restoration of piñon–juniper woodlands in the western United States: a review. Forest Ecology and Management, 2004, 189, 1-21.	1.4	114
51	Landscape Heterogeneity and Disturbance Interactions in a Subalpine Watershed in Northern Colorado, USA. Annals of the American Association of Geographers, 2003, 93, 797-813.	3.0	29
52	DISTURBANCE AND STAND DYNAMICS IN PONDEROSA PINE FORESTS IN ROCKY MOUNTAIN NATIONAL PARK, USA. Ecological Monographs, 2003, 73, 543-566.	2.4	90
53	Fires and Climate in Forested Landscapes of the U.S. Rocky Mountains. , 2003, , 120-157.		19
54	Using GIS to analyse a severe forest blowdown in the Southern Rocky Mountains. International Journal of Geographical Information Science, 2002, 16, 377-399.	2.2	22

William L Baker

#	Article	IF	CITATIONS
55	Effect of vegetation on the impact of a severe blowdown in the southern Rocky Mountains, USA. Forest Ecology and Management, 2002, 168, 63-75.	1.4	64
56	Uncertainty in surface-fire history: the case of ponderosa pine forests in the western United States. Canadian Journal of Forest Research, 2001, 31, 1205-1226.	0.8	158
57	Subalpine forest damage from a severe windstorm in northern Colorado. Canadian Journal of Forest Research, 2001, 31, 2089-2097.	0.8	44
58	Attributes of blowdown patches from a severe wind event in the Southern Rocky Mountains, USA. Landscape Ecology, 2001, 16, 313-325.	1.9	32
59	A fire history of a subalpine forest in south-eastern Wyoming, USA. Journal of Biogeography, 2000, 27, 71-85.	1.4	88
60	Watershed analysis of forest fragmentation by clearcuts and roads in a Wyoming forest. Landscape Ecology, 1998, 13, 149-165.	1.9	111
61	Factors Influencing Succession: Lessons from Large, Infrequent Natural Disturbances. Ecosystems, 1998, 1, 511-523.	1.6	614
62	Spruce and Fir Regeneration and Climate in the Forest-Tundra Ecotone of Rocky Mountain National Park, Colorado, U.S.A Arctic and Alpine Research, 1997, 29, 173.	1.3	72
63	Using GIS to model tree population parameters in the Rocky Mountain National Park forest-tundra ecotone. Journal of Biogeography, 1997, 24, 513-526.	1.4	18
64	The effects of elk on aspen in the winter range in Rocky Mountain National Park. Ecography, 1997, 20, 155-165.	2.1	154
65	Spruce-fir growth form changes in the forest-tundra ecotone of Rocky Mountain National Park, Colorado, USA. Ecography, 1997, 20, 356-367.	2.1	25
66	Nonequilibrium Dynamics between Catastrophic Disturbances and Old-Growth Forests in Ponderosa Pine Landscapes of the Black Hills. Conservation Biology, 1997, 11, 1276-1288.	2.4	135
67	Contribution of Roads to Forest Fragmentation in the Rocky Mountains. Conservation Biology, 1996, 10, 1098-1106.	2.4	204
68	Longterm response of disturbance landscapes to human intervention and global change. Landscape Ecology, 1995, 10, 143-159.	1.9	116
69	Attributes of reliable long-term landscape-scale studies: Malpractice insurance for landscape ecologists. Environmental Monitoring and Assessment, 1995, 36, 1-25.	1.3	45
70	Multiple Stable States and Models of Riparian Vegetation Succession on the Animas River, Colorado. Annals of the American Association of Geographers, 1995, 85, 320-338.	3.0	277
71	The r.le programs for multiscale analysis of landscape structure using the GRASS geographical information system. Landscape Ecology, 1992, 7, 291-302.	1.9	355
72	The landscape ecology of large disturbances in the design and management of nature reserves. Landscape Ecology, 1992, 7, 181-194.	1.9	184

#	Article	IF	CITATIONS
73	Spruce Beetles and Fires in the Nineteenth-Century Subalpine Forests of Western Colorado, U.S.A Arctic and Alpine Research, 1990, 22, 65.	1.3	89