Igor P Vorona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4461793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nature of some features in Raman spectra of hydroxyapatite-containing materials. Journal of Raman Spectroscopy, 2016, 47, 726-730.	2.5	38
2	Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying. Nanoscale Research Letters, 2015, 10, 464.	5.7	30
3	Preparation, Characterization, and Thermal Transformation of Poorly Crystalline Sodium―and Carbonateâ€Substituted Calcium Phosphate. European Journal of Inorganic Chemistry, 2015, 2015, 622-629.	2.0	23
4	Evidence of annealing-induced transformation of radicals in irradiated tooth enamel. Radiation Measurements, 2006, 41, 577-581.	1.4	22
5	THE MECHANISM OF CO2 - RADICAL FORMATION IN BIOLOGICAL AND SYNTHETIC APATITES. Health Physics, 2010, 98, 322-326.	0.5	17
6	NO 3 2â^' and CO 2 â^' centers in synthetic hydroxyapatite: Features of the formation under Î ³ - and UV-irradiations. Physics of the Solid State, 2011, 53, 1891-1894.	0.6	16
7	Separation of the contributions from \hat{I}^3 - and UV-radiation to the EPR spectra of tooth enamel plates. Applied Radiation and Isotopes, 2007, 65, 553-556.	1.5	12
8	EPR study of radiation-induced defects in carbonate-containing hydroxyapatite annealed at high temperature. Radiation Measurements, 2016, 87, 49-55.	1.4	12
9	Mn3+ stabilization in complex phosphate–fluoride fluxes and its incorporation into langbeinite framework. Journal of Solid State Chemistry, 2007, 180, 2838-2844.	2.9	11
10	- and UV-induced radicals in tooth enamel. Radiation Measurements, 2007, 42, 1181-1184.	1.4	11
11	NO 3 2- centers in synthetic hydroxyapatite. Physics of the Solid State, 2010, 52, 2364-2368.	0.6	10
12	Comparative EPR study CO2â^' radicals in modern and fossil tooth enamel. Radiation Measurements, 2015, 78, 53-57.	1.4	9
13	Luminescent and Optically Detected Magnetic Resonance Studies of CdS/PVA Nanocomposite. Nanoscale Research Letters, 2017, 12, 130.	5.7	9
14	CO 2 â^' radicals in synthetic hydroxyapatite. Physics of the Solid State, 2008, 50, 1852-1856.	0.6	8
15	Effect of pre-annealing on NO32- centers in synthetic hydroxyapatite. Radiation Measurements, 2012, 47, 970-973.	1.4	8
16	Radiation-induced defects in annealed carbonate-containing hydroxyapatite. Physics of the Solid State, 2013, 55, 2543-2548.	0.6	8
17	Synthesis and Properties of Water-Soluble Blue-Emitting Mn-Alloyed CdTe Quantum Dots. Nanoscale Research Letters, 2018, 13, 132.	5.7	8
18	K2FeIII 0.5TiIII 0.5TiIV 1.0(PO4)3: Preparation and Characterization of a Langbeinite-related Phosphate Containing Iron(III) and Mixed-valent Titanium. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 261-266.	0.7	7

IGOR P VORONA

#	Article	IF	CITATIONS
19	The Crystal Structure of Micro- and Nanopowders of ZnS Studied by EPR of Mn2+ and XRD. Nanoscale Research Letters, 2016, 11, 517.	5.7	7
20	The mechanism of formation of interface barriers in ZnO:Mn ceramics. SN Applied Sciences, 2020, 2, 1.	2.9	7
21	ENDOR study of CO2â^' radicals in hydroxyapatite of γ-irradiated bone. Radiation Measurements, 2011, 46, 37-39.	1.4	5
22	Thermally stimulated transformation of the EPR spectra in \hat{I}^3 -irradiated bone tissue. Radiation Measurements, 2009, 44, 239-242.	1.4	4
23	Synthesis, Characterization and EPR Investigation of γ-Induced Defects of Nanoparticles of (<i>M^I</i> , CO ₃)-Containing Apatites (<i>M^I</i> – Na, K). Solid State Phenomena, 2015, 230, 133-139.	0.3	4
24	Peculiarities of Thermally Activated Migration of Subvalent Impurities in Cu-Doped Y-Stabilized ZrO2 Nanopowders Produced From Zr Oxychlorides. Frontiers in Materials, 2018, 5, .	2.4	4
25	The role of excess MgO in the intensity increase of red emission of Mn4+-activated Mg2TiO4 phosphors. Journal of Materials Science: Materials in Electronics, 2020, 31, 7555-7564.	2.2	4
26	Room-Temperature Electron Paramagnetic Resonance Study of a Copper-Related Defect in Cu ₂ ZnSnS ₄ Colloidal Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 9923-9929.	3.1	4
27	Isotropic radical in biological apatites. Radiation Measurements, 2007, 42, 1580-1582.	1.4	3
28	Retardation of nanoparticles growth by doping. Nanoscale Research Letters, 2014, 9, 683.	5.7	3
29	Effect of Cooling Rate on Dopant Spatial Localization and Phase Transformation in Cuâ€Doped Yâ€Stabilized ZrO ₂ Nanopowders. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700183.	0.8	2
30	Mn Distribution in ZnO:Mn Ceramics: Influence of Sintering Process and Thermal Annealing. ECS Journal of Solid State Science and Technology, 2020, 9, 103001.	1.8	2
31	Crystal Structure Determination of Low-Dimensional ZnS Powders Using EPR of Mn2+ Ions. Journal of Applied Spectroscopy, 2016, 83, 51-55.	0.7	1
32	Electron Paramagnetic Resonance of Mn2+ lons in Nanosized Zinc Sulfide with a Planar Lattice Fault. Journal of Applied Spectroscopy, 2019, 86, 130-133.	0.7	1
33	New Paramagnetic Center in Cu-Doped Y-Stabilized ZrO2. ECS Journal of Solid State Science and Technology, 2020, 9, 033002.	1.8	0