Aleksandra Hecel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4461707/publications.pdf

Version: 2024-02-01

18	216	9	14
papers	citations	h-index	g-index
19	19	19	354
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Specific Zn(II)-binding site in the C-terminus of Aspf2, a zincophore from $\langle i \rangle$ Aspergillus fumigatus $\langle i \rangle$. Metallomics, 2022, 14, .	2.4	5
2	Metal specificity of the Ni(<scp>ii</scp>) and Zn(<scp>ii</scp>) binding sites of the N-terminal and G-domain of <i>E. coli</i> i> HypB. Dalton Transactions, 2021, 50, 12635-12647.	3.3	1
3	Novel Perspective on Alzheimer's Disease Treatment: Rosmarinic Acid Molecular Interplay with Copper(II) and Amyloid β. Life, 2020, 10, 118.	2.4	16
4	Zinc(II)â€"The Overlooked Éminence Grise of Chloroquine's Fight against COVID-19?. Pharmaceuticals, 2020, 13, 228.	3.8	21
5	Metal Complexes of Two Specific Regions of ZnuA, a Periplasmic Zinc(II) Transporter from <i>Escherichia coli</i> . Inorganic Chemistry, 2020, 59, 1947-1958.	4.0	9
6	Zinc Binding Sites Conserved in Short Neuropeptides Containing a Diphenylalanine Motif. Inorganic Chemistry, 2020, 59, 925-929.	4.0	6
7	Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy. Current Medicinal Chemistry, 2019, 26, 624-647.	2.4	23
8	Copper(II)-Induced Restructuring of ZnuD, a Zinc(II) Transporter from <i>Neisseria meningitidis</i> Inorganic Chemistry, 2019, 58, 5932-5942.	4.0	6
9	Structural analysis of copper(I) interaction with amyloid \hat{l}^2 peptide. Journal of Inorganic Biochemistry, 2019, 195, 31-38.	3.5	25
10	How copper ions and membrane environment influence the structure of the human and chicken tandem repeats domain?. Journal of Inorganic Biochemistry, 2019, 191, 143-153.	3.5	5
11	Histidine tracts in human transcription factors: insight into metal ion coordination ability. Journal of Biological Inorganic Chemistry, 2018, 23, 81-90.	2.6	24
12	Impact of histidine spacing on modified polyhistidine tag – Metal ion interactions. Inorganica Chimica Acta, 2018, 472, 119-126.	2.4	21
13	Poly-Xaa Sequences in Proteins - Biological Role and Interactions with Metal Ions: Chemical and Medical Aspects. Current Medicinal Chemistry, 2018, 25, 22-48.	2.4	4
14	The effect of a membrane-mimicking environment on the interactions of Cu ²⁺ with an amyloidogenic fragment of chicken prion protein. Dalton Transactions, 2017, 46, 7758-7769.	3.3	6
15	Influence of membrane environments and copper ions on the structural features of amyloidogenic proteins correlated to neurodegeneration. Coordination Chemistry Reviews, 2016, 327-328, 8-19.	18.8	8
16	HENRYK â€" An endless source of metal coordination surprises. Journal of Inorganic Biochemistry, 2016, 163, 258-265.	3.5	3
17	Specific binding modes of Cu(I) and Ag(I) with neurotoxic domain of the human prion protein. Journal of Inorganic Biochemistry, 2016, 155, 26-35.	3. 5	16
18	Impact of SDS surfactant on the interactions of Cu ²⁺ ions with the amyloidogenic region of human prion protein. Dalton Transactions, 2015, 44, 13125-13132.	3.3	12