
Magnus Schou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4461367/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical Validation of ¹⁸ F-AZD4694, an Amyloid-β–Specific PET Radioligand. Journal of Nuclear Medicine, 2012, 53, 415-424.	5.0	204
2	Preclinical Comparison of the Blood–brain barrier Permeability of Osimertinib with Other EGFR TKIs. Clinical Cancer Research, 2021, 27, 189-201.	7.0	106
3	PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse, 2004, 53, 57-67.	1.2	105
4	Palladiumâ€Mediated [¹¹ C]Carbonylation at Atmospheric Pressure: A General Method Using Xantphos as Supporting Ligand. European Journal of Organic Chemistry, 2013, 2013, 1228-1231.	2.4	79
5	New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals. Clinical and Translational Imaging, 2017, 5, 275-289.	2.1	77
6	Specific in vivo binding to the norepinephrine transporter demonstrated with the PET radioligand, (S,S)-[11C]MeNER. Nuclear Medicine and Biology, 2003, 30, 707-714.	0.6	74
7	Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S,S)-[18F]FMeNER-D2. Psychopharmacology, 2006, 188, 119-127.	3.1	71
8	Post-mortem human brain autoradiography of the norepinephrine transporter using (S,S)-[18F]FMeNER-D2. European Neuropsychopharmacology, 2005, 15, 517-520.	0.7	64
9	In vitro autoradiography and in vivo evaluation in cynomolgus monkey of [¹⁸ F]FEâ€₱E2I, a new dopamine transporter PET radioligand. Synapse, 2009, 63, 871-880.	1.2	56
10	Synthesis, radiolabeling and preliminary in vivo evaluation of [18F]FE-PE2I, a new probe for the dopamine transporter. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4843-4845.	2.2	51
11	Late‣tage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 9744-9748.	13.8	45
12	A PET study in healthy subjects of brain exposure of ¹¹ C-labelled osimertinib – A drug intended for treatment of brain metastases in non-small cell lung cancer. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 799-807.	4.3	36
13	Brain exposure of the ATM inhibitor AZD1390 in humans—a positron emission tomography study. Neuro-Oncology, 2021, 23, 687-696.	1.2	35
14	Large Variation in Brain Exposure of Reference CNS Drugs: a PET Study in Nonhuman Primates. International Journal of Neuropsychopharmacology, 2015, 18, pyv036.	2.1	34
15	An evaluation of a highâ€pressure ¹¹ CO carbonylation apparatus. Journal of Labelled Compounds and Radiopharmaceuticals, 2015, 58, 220-225.	1.0	27
16	Radiolabeling of a high potency cannabinoid subtypeâ€1 receptor ligand, <i>N</i> â€(4â€fluoroâ€benzyl)â€4â€(3â€(piperidinâ€1â€yl)â€indoleâ€1â€sulfonyl)benzamide (PipISB), with c fluorineâ€18. Journal of Labelled Compounds and Radiopharmaceuticals, 2008, 51, 146-152.	arbona€1]	or26
17	Visible-Light-Enabled Aminocarbonylation of Unactivated Alkyl Iodides with Stoichiometric Carbon Monoxide for Application on Late-Stage Carbon Isotope Labeling. Journal of Organic Chemistry, 2019, 84, 16076-16085.	3.2	26
18	Sample preparation techniques for radiometabolite analysis of positron emission tomography radioligands; trends, progress, limitations and future prospects. TrAC - Trends in Analytical Chemistry, 2019, 110, 1-7.	11.4	26

MAGNUS SCHOU

#	Article	IF	CITATIONS
19	Identification of PET radiometabolites by cytochrome P450, UHPLC/Q-ToF-MS and fast radio-LC: applied to the PET radioligands [11C]flumazenil, [18F]FE-PE2I, and [11C]PBR28. Analytical and Bioanalytical Chemistry, 2013, 405, 1303-1310.	3.7	25
20	A Total Synthesis of Hydroxylysine in Protected Form and Investigations of the Reductive Opening of p-Methoxybenzylidene Acetals. Journal of Organic Chemistry, 2004, 69, 8694-8701.	3.2	24
21	Direct Plasma Metabolite Analysis of Positron Emission Tomography Radioligands by Micellar Liquid Chromatography with Radiometric Detection. Analytical Chemistry, 2012, 84, 3222-3230.	6.5	24
22	ldentification of positron emission tomography (PET) tracer candidates by prediction of the target-bound fraction in the brain. EJNMMI Research, 2014, 4, 50.	2.5	24
23	Synthesis and evaluation of pyridylbenzofuran, pyridylbenzothiazole and pyridylbenzoxazole derivatives as 18F-PET imaging agents for β-amyloid plaques. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4332-4337.	2.2	23
24	ldentification and in vitro characterization of C05-01, a PBB3 derivative with improved affinity for alpha-synuclein. Brain Research, 2020, 1749, 147131.	2.2	21
25	Specific in vitro binding of (S,S)-[3H]MeNER to norepinephrine transporters. Synapse, 2005, 56, 100-104.	1.2	20
26	Development of Radioligands for Imaging of Brain Norepinephrine Transporters In Vivo with Positron Emission Tomography. Current Topics in Medicinal Chemistry, 2007, 7, 1806-1816.	2.1	20
27	Improved Yields for the Palladiumâ€Mediated ¹¹ C arbonylation Reaction Using Microwave Technology. European Journal of Organic Chemistry, 2014, 2014, 307-310.	2.4	19
28	Determination of plasma protein binding of positron emission tomography radioligands by high-performance frontal analysis. Journal of Pharmaceutical and Biomedical Analysis, 2014, 98, 140-143.	2.8	19
29	¹¹ C-carbonylation reactions using gas–liquid segmented microfluidics. RSC Advances, 2015, 5, 88886-88889.	3.6	19
30	Whole-body biodistribution, radiation dosimetry estimates for the PET norepinephrine transporter probe (S,S)-[18F]FMeNER-D2 in non-human primates. Nuclear Medicine Communications, 2005, 26, 695-700.	1.1	18
31	Glia Imaging Differentiates Multiple System Atrophy from Parkinson's Disease: A Positron Emission Tomography Study with [<scp>¹¹C</scp>] <scp>PBR28</scp> and Machine Learning Analysis. Movement Disorders, 2022, 37, 119-129.	3.9	18
32	Synthesis and Positron Emission Tomography Evaluation of Three Norepinephrine Transporter Radioligands: [C-11]Desipramine, [C-11]Talopram and [C-11]Talsupram. Molecular Imaging and Biology, 2006, 8, 1-8.	2.6	16
33	Synthesis of 3H-labeled N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane (PE2I) and its interaction with mice striatal membrane fragments. Applied Radiation and Isotopes, 2007, 65, 293-300.	1.5	15
34	Investigation of the Metabolites of (S,S)-[11C]MeNER in Humans, Monkeys and Rats. Molecular Imaging and Biology, 2009, 11, 23-30.	2.6	15
35	Rapid metabolite analysis of positron emission tomography radioligands by direct plasma injection combining micellar cleanup with high submicellar liquid chromatography with radiometric detection. Journal of Chromatography A, 2012, 1266, 76-83.	3.7	15
36	The development of a GPR44 targeting radioligand [11C]AZ12204657 for in vivo assessment of beta cell mass. EJNMMI Research, 2018, 8, 113.	2.5	15

MAGNUS SCHOU

#	Article	IF	CITATIONS
37	Rapid and Efficient Synthesis of ¹¹ C‣abeled Benzimidazolones Using [¹¹ C]Carbon Dioxide. ChemistrySelect, 2019, 4, 1846-1849.	1.5	15
38	Lack of effect of reserpine-induced dopamine depletion on the binding of the dopamine-D3 selective radioligand, [11C]RGH-1756. Brain Research Bulletin, 2005, 67, 219-224.	3.0	14
39	Synthesis and PET evaluation of (R)-[S-methyl-11C]thionisoxetine, a candidate radioligand for imaging brain norepinephrine transporters. Journal of Labelled Compounds and Radiopharmaceuticals, 2006, 49, 1007-1019.	1.0	14
40	Synthesis of 11C-labelled (R)-OHDMI and CFMME and their evaluation as candidate radioligands for imaging central norepinephrine transporters with PET. Bioorganic and Medicinal Chemistry, 2007, 15, 616-625.	3.0	14
41	Radiofluorination and reductive amination using a microfluidic device. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 455-459.	1.0	14
42	Radiolabeling of the cannabinoid receptor agonist AZD1940 with carbon-11 and PET microdosing in non-human primate. Nuclear Medicine and Biology, 2013, 40, 410-414.	0.6	14
43	Efficient DBU accelerated synthesis of ¹⁸ F-labelled trifluoroacetamides. Chemical Communications, 2016, 52, 13963-13966.	4.1	13
44	Late‣tage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO ₂ . Angewandte Chemie, 2018, 130, 9892-9896.	2.0	11
45	"Inâ€loop―carbonylation—A simplified method for carbonâ€1 1 labelling of drugs and radioligands. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 100-107.	1.0	11
46	First Radiolabeling of a Ganglioside with a Positron Emitting Radionuclide: <i>In Vivo</i> PET Demonstrates Low Exposure of Radiofluorinated GM1 in Non-human Primate Brain. ACS Chemical Neuroscience, 2020, 11, 1245-1249.	3.5	11
47	Synthesis, Radiolabeling, and In Vivo Pharmacokinetic Evaluation of the Amyloid Beta Radioligand [11C]AZD4694 in Nonhuman Primates. Molecular Imaging and Biology, 2014, 16, 173-179.	2.6	10
48	Direct and Efficient (Carbonyl)cobaltâ€Mediated Aryl Acetylation Using [11C]Methyl Iodide. European Journal of Organic Chemistry, 2016, 2016, 2775-2777.	2.4	10
49	Reduction of [¹¹ C]CO ₂ to [¹¹ C]CO using solid supported zinc. Journal of Labelled Compounds and Radiopharmaceuticals, 2017, 60, 624-628.	1.0	10
50	Development of [<i>Carbonyl</i> - ¹¹ C]AZ13198083, a Novel Histamine Type-3 Receptor Radioligand with Favorable Kinetics. ACS Chemical Neuroscience, 2018, 9, 906-911.	3.5	9
51	Pulmonary PET imaging confirms preferential lung target occupancy of an inhaled bronchodilator. EJNMMI Research, 2019, 9, 9.	2.5	9
52	Synthesis of a delta opioid agonist in [² H ₆], [² H ₄], [¹¹ C], and [¹⁴ C] labeled forms. Journal of Labelled Compounds and Radiopharmaceuticals, 2011, 54, 847-854.	1.0	8
53	Synthesis of trifluoromethyl moieties by late-stage copper (I) mediated nucleophilic fluorination. Journal of Fluorine Chemistry, 2017, 194, 51-57.	1.7	8
54	[11 C]AZ10419096 – a full antagonist PET radioligand for imaging brain 5-HT 1B receptors. Nuclear Medicine and Biology, 2017, 54, 34-40.	0.6	8

MAGNUS SCHOU

#	Article	IF	CITATIONS
55	Synthesis and Preclinical Evaluation of 6-[¹⁸ F]Fluorine-α-methyl- <scp> </scp> -tryptophan, a Novel PET Tracer for Measuring Tryptophan Uptake. ACS Chemical Neuroscience, 2020, 11, 1756-1761.	3.5	8
56	Discovery and Preclinical Validation of [11C]AZ13153556, a Novel Probe for the Histamine Type 3 Receptor. ACS Chemical Neuroscience, 2016, 7, 177-184.	3.5	7
57	Synthesis and evaluation of two new candidate high-affinity full agonist PET radioligands for imaging 5-HT1B receptors. Nuclear Medicine and Biology, 2019, 70, 1-13.	0.6	7
58	Development of a 18F-labeled PET radioligand for imaging 5-HT1B receptors: [18F]AZ10419096. Nuclear Medicine and Biology, 2019, 78-79, 11-16.	0.6	7
59	Radiolabeling of two ¹¹ Câ€labeled formylating agents and their application in the preparation of [¹¹ C]benzimidazole. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 460-462.	1.0	6
60	Discovery of a Novel Muscarinic Receptor PET Radioligand with Rapid Kinetics in the Monkey Brain. ACS Chemical Neuroscience, 2018, 9, 224-229.	3.5	6
61	Development of a fully automated lowâ€pressure [¹¹ C]CO carbonylation apparatus. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 517-522.	1.0	6
62	Increased Brain Exposure of an Alpha-Synuclein Fibrillization Modulator by Utilization of an Activated Ester Prodrug Strategy. ACS Chemical Neuroscience, 2018, 9, 2542-2547.	3.5	5
63	Quantification and reliability of [11C]VC - 002 binding to muscarinic acetylcholine receptors in the human lung $\hat{a} \in$ " a test-retest PET study in control subjects. EJNMMI Research, 2020, 10, 59.	2.5	5
64	Integrated Strategy for Use of Positron Emission Tomography in Nonhuman Primates to Confirm Multitarget Occupancy of Novel Psychotropic Drugs: An Example with AZD3676. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 464-471.	2.5	4
65	Synthesis, ³ H″abelling and in vitro evaluation of a substituted dipiperidine alcohol as a potential ligand for chemokine receptor 2. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 265-279.	1.0	4
66	Oneâ€Pot Synthesis of 11 C‣abelled Primary Benzamides via Intermediate [11 C]Aroyl Dimethylaminopyridinium Salts. Chemistry - A European Journal, 2021, 27, 8689-8693.	3.3	4
67	Transitionâ€Metalâ€Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angewandte Chemie, 2020, 132, 13592-13597.	2.0	3
68	Synthesis, Biodistribution, and Radiation Dosimetry of a Novel mGluR5 Radioligand: ¹⁸ F-AZD9272. ACS Chemical Neuroscience, 2020, 11, 1048-1057.	3.5	3
69	Multiple Applications of a Novel Biarsenical Imaging Probe in Fluorescence and PET Imaging of Melanoma. Bioconjugate Chemistry, 2021, 32, 497-501.	3.6	2
70	PET microdosing of CNS drugs. Clinical and Translational Imaging, 2017, 5, 291-298.	2.1	1
71	Abstract 5977: Discovery and preclinical validation of [11C]AZ3391: A first in class blood-brain barrier permeable, subtype selective PARP-1 PET radioligand. Cancer Research, 2022, 82, 5977-5977.	0.9	1
72	Synthesis and Preclinical Evaluation of [¹¹ C]AZ11895530 for PET Imaging of the Serotonin 1A Receptor. ACS Chemical Neuroscience, 2022, 13, 2078-2083.	3.5	0