Darren L De Zeeuw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4461040/publications.pdf

Version: 2024-02-01

75 papers 7,060 citations

38 h-index 72 g-index

75 all docs

75 docs citations

75 times ranked 3146 citing authors

#	Article	IF	CITATIONS
1	The SPASE Data Model: A Metadata Standard for Registering, Finding, Accessing, and Using Heliophysics Data Obtained From Observations and Modeling. Space Weather, 2018, 16, 1899-1911.	1.3	18
2	Realâ€Time SWMF at CCMC: Assessing the Dst Output From Continuous Operational Simulations. Space Weather, 2018, 16, 1583-1603.	1.3	32
3	lonospheric control of the dawnâ€dusk asymmetry of the Mars magnetotail current sheet. Journal of Geophysical Research: Space Physics, 2017, 122, 6397-6414.	0.8	17
4	Three-dimensional MHD simulation of the lunar wake. Science China Earth Sciences, 2013, 56, 330-338.	2.3	29
5	Magnetospheric cross-field currents during the January 6–7, 2011 high-speed stream-driven interval. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 99, 78-84.	0.6	12
6	The magnetospheric banana current. Journal of Geophysical Research: Space Physics, 2013, 118, 1009-1021.	0.8	29
7	Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 2012, 231, 870-903.	1.9	560
8	Deciphering magnetospheric cross-field currents. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	21
9	BREAKOUT CORONAL MASS EJECTION OR STREAMER BLOWOUT: THE BUGLE EFFECT. Astrophysical Journal, 2009, 693, 1178-1187.	1.6	39
10	Global MHD modeling of Mercury's magnetosphere with applications to the MESSENGER mission and dynamo theory. Icarus, 2008, 195, 1-15.	1.1	31
11	Pickup oxygen ion velocity space and spatial distribution around Mars. Journal of Geophysical Research, 2008, $113,\ldots$	3.3	80
12	Threeâ€dimensional MHD Simulation of the 2003 October 28 Coronal Mass Ejection: Comparison with LASCO Coronagraph Observations. Astrophysical Journal, 2008, 684, 1448-1460.	1.6	137
13	Understanding storm-time ring current development through data-model comparisons of a moderate storm. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	51
14	Sun-to-thermosphere simulation of the 28-30 October 2003 storm with the Space Weather Modeling Framework. Space Weather, 2007, 5, n/a-n/a.	1.3	97
15	Halloween Storm Simulations with the Space Weather Modeling Framework. , 2006, , .		2
16	The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection. Advances in Space Research, 2006, 38, 263-272.	1.2	62
17	A parallel explicit/implicit time stepping scheme on block-adaptive grids. Journal of Computational Physics, 2006, 217, 722-758.	1.9	57
18	Modeling the Sun-to-Earth propagation of a very fast CME. Advances in Space Research, 2006, 38, 253-262.	1.2	38

#	Article	IF	Citations
19	Coronal Mass Ejection Shock and Sheath Structures Relevant to Particle Acceleration. Astrophysical Journal, 2005, 622, 1225-1239.	1.6	122
20	IMPACT: Science goals and firsts with STEREO. Advances in Space Research, 2005, 36, 1534-1543.	1.2	23
21	Parallel, AMR MHD for Global Space Weather Simulations. Lecture Notes in Computational Science and Engineering, 2005, , 473-490.	0.1	4
22	Space Weather Modeling Framework: A new tool for the space science community. Journal of Geophysical Research, 2005, 110 , .	3.3	631
23	A PHYSICS-BASED SOFTWARE FRAMEWORK FOR SUN-EARTH CONNECTION MODELING. , 2005, , 383-397.		10
24	Solution-adaptive magnetohydrodynamics for space plasmas: sun-to-earth simulations. Computing in Science and Engineering, 2004, 6, 14-35.	1.2	62
25	Three-dimensional MHD simulation of a flux rope driven CME. Journal of Geophysical Research, 2004, 109, .	3.3	130
26	Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation. Journal of Geophysical Research, 2004, 109, .	3.3	238
27	Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 2004, 109, .	3.3	203
28	Eruption of a Buoyantly Emerging Magnetic Flux Rope. Astrophysical Journal, 2004, 610, 588-596.	1.6	264
29	Magnetic Effects at the Edge of the Solar System: MHD Instabilities, the de Laval Nozzle Effect, and an Extended Jet. Astrophysical Journal, 2004, 611, 575-586.	1.6	36
30	Adaptive Mesh Refinement for Global Magnetohydrodynamic Simulation. Lecture Notes in Physics, 2003, , 247-274.	0.3	30
31	Parallel, Adaptive-Mesh-Refinement MHD for Global Space-Weather Simulations. AIP Conference Proceedings, 2003, , .	0.3	4
32	A Three-dimensional Flux Rope Model for Coronal Mass Ejections Based on a Loss of Equilibrium. Astrophysical Journal, 2003, 588, L45-L48.	1.6	175
33	Probing the Edge of the Solar System: Formation of an Unstable Jet-Sheet. Astrophysical Journal, 2003, 591, L61-L65.	1.6	47
34	A Three-dimensional Model of the Solar Wind Incorporating Solar Magnetogram Observations. Astrophysical Journal, 2003, 595, L57-L61.	1.6	179
35	Semirelativistic Magnetohydrodynamics and Physics-Based Convergence Acceleration. Journal of Computational Physics, 2002, 177, 176-205.	1.9	127
36	The interaction between the magnetosphere of Saturn and Titan's ionosphere. Journal of Geophysical Research, 2001, 106, 6151-6160.	3.3	62

#	Article	IF	Citations
37	Using steady state MHD results to predict the global state of the magnetosphere-ionosphere system. Journal of Geophysical Research, 2001, 106, 30067-30076.	3.3	64
38	The solar wind interaction with Mars: results of three-dimensional three-species MHD studies. Advances in Space Research, 2001, 27, 1837-1846.	1.2	43
39	Global MHD simulations for southward IMF: a pair of wings in the flanks. Advances in Space Research, 2001, 28, 1763-1771.	1.2	7
40	lo's magnetospheric interaction: an MHD model with day-night asymmetry. Planetary and Space Science, 2001, 49, 337-344.	0.9	21
41	Interaction of Mercury with the Solar Wind. Icarus, 2000, 143, 397-406.	1.1	146
42	Multiscale MHD simulation of a coronal mass ejection and its interaction with the magnetosphere–ionosphere system. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62, 1515-1525.	0.6	32
43	Three-dimensional MHD simulation of coronal mass ejections. Advances in Space Research, 2000, 26, 793-800.	1.2	13
44	A 3D global MHD simulation of Saturn's magnetosphere. Advances in Space Research, 2000, 26, 1681-1690.	1.2	31
45	3D multiscale mass loaded MHD simulations of the solar wind interaction with Mars. Advances in Space Research, 2000, 26, 1571-1575.	1.2	7
46	Magnetospheric configuration for Parker-spiral IMF conditions: Results of a 3D AMR MHD simulation. Advances in Space Research, 2000, 26, 139-149.	1.2	64
47	A model of solar wind–magnetosphere–ionosphere coupling for due northward IMF. Planetary and Space Science, 2000, 48, 29-39.	0.9	39
48	High performance computer methods applied to predictive space weather simulations. IEEE Transactions on Plasma Science, 2000, 28, 1931-1937.	0.6	10
49	An adaptive MHD method for global space weather simulations. IEEE Transactions on Plasma Science, 2000, 28, 1956-1965.	0.6	90
50	Title is missing!. Astrophysics and Space Science, 2000, 274, 407-421.	0.5	10
51	Interpretation of vega observations at comet halley applying three-dimensional MHD simulations. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science, 2000, 25, 153-156.	0.2	2
52	Titan's magnetic wake: Atmospheric or magnetospheric interaction. Journal of Geophysical Research, 2000, 105, 10761-10770.	3.3	31
53	Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. Journal of Geophysical Research, 2000, 105, 25053-25078.	3.3	245
54	Two-species, 3D, MHD simulation of Europa's interaction with Jupiter's magnetosphere. Geophysical Research Letters, 2000, 27, 1791-1794.	1.5	18

#	Article	IF	CITATIONS
55	Magnetic field structure at the diamagnetic cavity boundary (Numerical simulations). Geophysical Research Letters, 2000, 27, 3817-3820.	1.5	3
56	A Parallel Adaptive 3D MHD Scheme for Modeling Coronal and Solar Wind Plasma Flows. Space Science Reviews, 1999, 87, 193-198.	3.7	20
57	A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. Journal of Computational Physics, 1999, 154, 284-309.	1.9	1,199
58	Interaction of the Saturnian magnetosphere with Titan: Results of a three-dimensional MHD simulation. Journal of Geophysical Research, 1999, 104, 2451-2458.	3.3	56
59	3D multi-fluid MHD studies of the solar wind interaction with Mars. Geophysical Research Letters, 1999, 26, 2689-2692.	1.5	53
60	On Europa's magnetospheric interaction: A MHD simulation of the E4 flyby. Journal of Geophysical Research, 1999, 104, 19983-19992.	3.3	28
61	The induced magnetosphere of comet Halley: 4. Comparison of in situ observations and numerical simulations. Journal of Geophysical Research, 1999, 104, 28309-28319.	3.3	10
62	A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field. Journal of Geophysical Research, 1999, 104, 28361-28378.	3.3	98
63	Heliosphere in the magnetized local interstellar medium: Results of a three-dimensional MHD simulation. Journal of Geophysical Research, 1998, 103, 1889-1904.	3.3	165
64	lo's plasma environment during the Galileo flyby: Global three-dimensional MHD modeling with adaptive mesh refinement. Journal of Geophysical Research, 1998, 103, 9071-9081.	3.3	65
65	A three-dimensional MHD study of solar wind mass loading processes at Venus: Effects of photoionization, electron impact ionization, and charge exchange. Journal of Geophysical Research, 1998, 103, 23625-23638.	3.3	53
66	Adaptive blocks., 1997,,.		36
67	Modeling of Cometary X-rays Caused by Solar Wind Minor Ions. Science, 1997, 276, 939-942.	6.0	127
68	Dust-Gas Interrelations In Comets: Observations And Theory. Earth, Moon and Planets, 1997, 79, 275-306.	0.3	57
69	MHD Simulation of Comets: The Plasma Environment of Comet Hale-Bopp. Earth, Moon and Planets, 1997, 79, 179-207.	0.3	28
70	Plasma flow in the cometosheath of comet Halley. Advances in Space Research, 1997, 20, 275-278.	1.2	4
71	Quantitative Analysis of H2O+Coma Images Using a Multiscale MHD Model with Detailed Ion Chemistry. Icarus, 1997, 130, 373-386.	1.1	36
72	A new axisymmetric MHD model of the interaction of the solar wind with Venus. Journal of Geophysical Research, 1996, 101, 4547-4556.	3.3	26

#	Article	IF	CITATIONS
73	Three-dimensional multiscale MHD model of cometary plasma environments. Journal of Geophysical Research, 1996, 101, 15233-15253.	3.3	126
74	Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results. Journal of Geophysical Research, 1994, 99, 21525.	3.3	68
75	An Adaptively Refined Cartesian Mesh Solver for the Euler Equations. Journal of Computational Physics, 1993, 104, 56-68.	1.9	270