Xing Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4460920/publications.pdf Version: 2024-02-01

XINC XIN

#	Article	IF	CITATIONS
1	Dual-functional 3D carbon fibers decorated with Co nanoparticles and Co-N _{<i>x</i>} sites for rechargeable aprotic Li–O ₂ batteries. New Journal of Chemistry, 2022, 46, 11570-11578.	2.8	3
2	Electrochemical Polishing: An Effective Strategy for Eliminating Li Dendrites. Advanced Functional Materials, 2022, 32, .	14.9	9
3	Bilayer NASICON/Polymer Hybrid Electrolyte for Stable Solid-State Li–O ₂ Batteries. ACS Applied Energy Materials, 2022, 5, 9149-9157.	5.1	15
4	Poly(methyl methacrylate)-Based Gel Polymer Electrolyte for High-Performance Solid State Li–O ₂ Battery with Enhanced Cycling Stability. ACS Applied Energy Materials, 2021, 4, 3975-3982.	5.1	30
5	Guiding uniform Zn deposition by cocoons for long-life Zn metal batteries. New Journal of Chemistry, 2021, 45, 9747-9750.	2.8	1
6	Bimetallic Hexagonal Layered Ni–Co Sulfides with High Electrochemical Performance for All-Solid-State Lithium Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 17061-17067.	6.7	8
7	Nitrogen-doped polymer nanofibers decorated with Co nanoparticles for uniform lithium nucleation/growth in lithium metal batteries. Nanoscale, 2020, 12, 8819-8827.	5.6	7
8	Constructing BaLi2Ti6O14@C nanofibers with a low carbon content as high-performance anode materials for Li-ion batteries. New Journal of Chemistry, 2020, 44, 4295-4303.	2.8	4
9	Scalable synthesis of one-dimensional Na ₂ Li ₂ Ti ₆ O ₁₄ nanofibers as ultrahigh rate capability anodes for lithium-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 646-653.	6.0	10
10	PEDOT-PSS coated VS ₂ nanosheet anodes for high rate and ultrastable lithium-ion batteries. New Journal of Chemistry, 2019, 43, 1681-1687.	2.8	28
11	Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nature Communications, 2019, 10, 2809.	12.8	43
12	Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu. ACS Applied Materials & Interfaces, 2019, 11, 17629-17636.	8.0	10
13	Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate. ACS Applied Materials & Interfaces, 2018, 10, 6785-6792.	8.0	28
14	Electrochemical behavior of Ru nanoparticles as catalysts in aprotic Li–O2 batteries. Electrochimica Acta, 2018, 261, 323-329.	5.2	15
15	Dendriteâ€Free Epitaxial Growth of Lithium Metal during Charging in Li–O 2 Batteries. Angewandte Chemie, 2018, 130, 13390-13394.	2.0	53
16	Dendriteâ€Free Epitaxial Growth of Lithium Metal during Charging in Li–O ₂ Batteries. Angewandte Chemie - International Edition, 2018, 57, 13206-13210.	13.8	76
17	Circular Graphene Platelets with Grain Size and Orientation Gradients Grown by Chemical Vapor Deposition. Advanced Materials, 2017, 29, 1605451.	21.0	8
18	Highly Efficient Br [–] /NO ₃ [–] Dual-Anion Electrolyte for Suppressing Charging Instabilities of Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 25976-25984.	8.0	69

Xing Xin

#	Article	IF	CITATIONS
19	Graphene/activated carbon composite material for oxygen electrodes in lithium–oxygen rechargeable batteries. Carbon, 2016, 99, 167-173.	10.3	21
20	Synthesis and Electrochemical Performance of Graphene Wrapped Sn _{<i>x</i>} Ti _{1â^'<i>x</i>} O ₂ Nanoparticles as an Anode Material for Li-Ion Batteries. Journal of Nanomaterials, 2015, 2015, 1-10.	2.7	3
21	Enhanced Rate Capability of Polymer-Derived SiCN Anode Material for Electrochemical Storage of Lithium with 3-D Carbon Nanotube Network Dispersed in Nanoscale. Journal of Nanoscience and Nanotechnology, 2015, 15, 3067-3075.	0.9	4
22	CTAB micelles assisted rGO–AgNP hybrids for SERS detection of polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics, 2015, 17, 21158-21163.	2.8	18
23	Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 21112-21119.	3.1	135
24	Scalable Synthesis of TiO ₂ /Graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries. ACS Nano, 2012, 6, 11035-11043.	14.6	271
25	A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 7724.	6.7	193
26	Co3O4 nanowires as high capacity anode materials for lithium ion batteries. Journal of Alloys and Compounds, 2012, 521, 95-100.	5.5	101
27	Si/C nanocomposite anode materials by freeze-drying with enhanced electrochemical performance in lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 2733-2738.	2.5	14