Chuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4460585/publications.pdf

Version: 2024-02-01

		1684188	1474206	
13	67	5	9	
papers	citations	h-index	g-index	
13	13	13	50	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	A Noniterative and Efficient Technique to Extract Complex Permittivity of Low-Loss Dielectric Materials at Terahertz Frequencies. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1971-1975.	4.0	18
2	Direct Extraction of Complex Permittivity and Permeability of Materials on a Known-Substrate From Transmission/Reflection Measurements. IEEE Microwave and Wireless Components Letters, 2019, 29, 693-695.	3.2	13
3	Determination of Complex Permittivity of Low-Loss Materials From Reference-Plane Invariant Transmission/Reflection Measurements. IEEE Access, 2019, 7, 131865-131872.	4.2	11
4	Multi-Step-Ahead Prediction for a CMOS Low Noise Amplifier Aging Due to NBTI and HCI Using Neural Networks. Journal of Electronic Testing: Theory and Applications (JETTA), 2019, 35, 797-808.	1.2	10
5	Extraction of Stable Complex Permittivity and Permeability of Low-Loss Materials From Transmission/Reflection Measurements. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	4.7	6
6	A Position-Independent Reflection-Only Method for Complex Permittivity and Permeability Determination with One Sample. Frequenz, 2020, 74, 163-167.	0.9	3
7	Non-Iterative Method for Extracting Complex Permittivity and Thickness of Materials From Reflection-Only Measurements. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	4.7	3
8	Determination of unique and stable complex permittivity of granular materials from transmission and reflection measurements. Microwave and Optical Technology Letters, 2021, 63, 753-757.	1.4	1
9	Estimation methods to extract complex permittivity from transmission coefficient in the terahertz band. Optical and Quantum Electronics, 2021, 53, 1.	3.3	1
10	An improved technique for low-loss material complex permittivity and permeability determination from transmission-only measurements. Frequenz, 2020, 74, 435-439.	0.9	1
11	Comments on "Complex Dielectric Measurements of Forest Fire Ash at X-Band Frequencies―[Sep 11 859-863]. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 549-549.	3.1	0
12	Erratum to "Extraction of Stable Complex Permittivity and Permeability of Low-Loss Materials From Transmission/Reflection Measurements― IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-1.	4.7	0
13	Measurement of the dielectric properties of various monoolein/ water mesophases between 90 and 140 GHz. Materialpruefung/Materials Testing, 2020, 62, 1118-1120.	2.2	O