Lars Gundlach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4460301/publications.pdf

Version: 2024-02-01

		430874	454955
56	1,026	18	30
papers	citations	h-index	g-index
= 4	= 4	- 4	1.405
56	56	56	1485
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Fluorescence Enhancement of Di- <i>p</i> -tolyl Viologen by Complexation in Cucurbit[7]uril. Journal of the American Chemical Society, 2012, 134, 3358-3366.	13.7	109
2	Role of Molecular Anchor Groups in Molecule-to-Semiconductor Electron Transferâ€. Journal of Physical Chemistry B, 2006, 110, 25383-25391.	2.6	102
3	Ultrafast interfacial electron transfer from the excited state of anchored molecules into a semiconductor. Progress in Surface Science, 2007, 82, 355-377.	8.3	76
4	Sub-20 fs visible pulses with 750 nJ energy from a 100 kHz noncollinear optical parametric amplifier. Optics Letters, 2006, 31, 1289.	3.3	56
5	Evaluating the Mechanisms of Light-Triggered siRNA Release from Nanoshells for Temporal Control Over Gene Regulation. Nano Letters, 2018, 18, 3565-3570.	9.1	49
6	Femtosecond Kerr-gated wide-field fluorescence microscopy. Optics Letters, 2008, 33, 992.	3.3	41
7	Synthesis and Characterization of ZnO/CuO Vertically Aligned Hierarchical Tree-like Nanostructure. Langmuir, 2018, 34, 961-969.	3.5	38
8	Femtosecond two-photon photoemission at 150 kHz utilizing two noncollinear optical parametric amplifiers for measuring ultrafast electron dynamics. Applied Physics B: Lasers and Optics, 2005, 80, 727-731.	2.2	30
9	Ultrafast Spatially Resolved Carrier Dynamics in Single CdSSe Nanobelts. Journal of Physical Chemistry C, 2009, 113, 12162-12166.	3.1	26
10	Photoinduced Ultrafast Heterogeneous Electron Transfer at Molecule–Semiconductor Interfaces. Journal of Physical Chemistry Letters, 2014, 5, 3498-3507.	4.6	26
11	Femtosecond two-photon photoemission probing electron injection from the excited singlet state of perylene attached to a long rigid tripod anchor-cum-spacer on rutile TiO2(110). Research on Chemical Intermediates, 2005, 31, 39-46.	2.7	24
12	Pathway-Dependent Electron Transfer for Rod-Shaped Perylene-Derived Molecules Adsorbed in Nanometer-Size TiO ₂ Cavities. Journal of Physical Chemistry C, 2007, 111, 13586-13594.	3.1	24
13	Ultrafast Relaxation Dynamics of Photoexcited Zinc-Porphyrin: Electronic-Vibrational Coupling. Journal of Physical Chemistry Letters, 2016, 7, 3151-3156.	4.6	24
14	Dynamics of photoinduced electron transfer from adsorbed molecules into solids. Applied Physics A: Materials Science and Processing, 2007, 88, 481-495.	2.3	22
15	Test of theoretical models for ultrafast heterogeneous electron transfer with femtosecond two-photon photoemission data. Journal of Chemical Sciences, 2009, 121, 561-574.	1.5	22
16	InAlN/GaN HEMT on Si With fmax = 270 GHz. IEEE Transactions on Electron Devices, 2021, 68, 994-999.	3.0	22
17	Heterogeneous Electron-Transfer Dynamics through Dipole-Bridge Groups. Journal of Physical Chemistry C, 2016, 120, 48-55.	3.1	21
18	Vibrational State Dependence of Interfacial Electron Transfer: Hot Electron Injection from the S ₁ State of Azulene into TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 20485-20493.	3.1	19

#	Article	IF	CITATIONS
19	Ultraviolet femtosecond Kerr-gated wide-field fluorescence microscopy. Optics Letters, 2016, 41, 2462.	3.3	18
20	Dynamics of electron scattering between bulk states and the C 1 surface state of InP(100). Applied Physics A: Materials Science and Processing, 2004, 78, 239-239.	2.3	16
21	Electronic state dependence of heterogeneous electron transfer: injection from the S ₁ and S ₂ state of phlorin into TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 7914-7923.	2.8	16
22	Ti:Sapphire laser irradiation of graphene oxide film in order to tune its structural, chemical and electrical properties: Patterning and characterizations. Applied Surface Science, 2020, 500, 144053.	6.1	16
23	Two-photon photoemission as a probe of unoccupied and occupied surface states of InP(100). Journal of Crystal Growth, 2003, 248, 206-210.	1.5	15
24	Vibronic Effects in the Ultrafast Interfacial Electron Transfer of Perylene-Sensitized TiO ₂ Surfaces. Journal of Physical Chemistry C, 2019, 123, 12599-12607.	3.1	15
25	Ultrafast Photoinduced Electron Transfer at Electrodes: The General Case of a Heterogeneous Electronâ€Transfer Reaction. ChemPhysChem, 2012, 13, 2877-2881.	2.1	14
26	Hot Hole Hopping in a Polyoxotitanate Cluster Terminated with Catechol Electron Donors. Journal of Physical Chemistry C, 2016, 120, 20006-20015.	3.1	14
27	Energy Band Architecture of a Hierarchical ZnO/Au/Cu <i>_x</i> O Nanoforest by Mimicking Natural Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 40490-40502.	8.0	13
28	Dynamics of ultrafast photoinduced heterogeneous electron transfer, implications for recent solar energy conversion scenarios. Chemical Physics Letters, 2012, 545, 35-39.	2.6	11
29	Excitons and Excess Electrons in Nanometer Size Molecular Polyoxotitanate Clusters: Electronic Spectra, Exciton Dynamics, and Surface States. Journal of Physical Chemistry B, 2013, 117, 4422-4430.	2.6	11
30	Efficient Z-scheme charge separation in novel vertically aligned ZnO/CdSSe nanotrees. Nanotechnology, 2016, 27, 135401.	2.6	11
31	Ultrafast Formation of the Charge Transfer State of Prodan Reveals Unique Aspects of the Chromophore Environment. Journal of Physical Chemistry B, 2020, 124, 2643-2651.	2.6	11
32	Light and microwave driven spin pumping across FeGaB–BiSb interface. Physical Review Materials, 2021, 5, .	2.4	11
33	Efficiency and temporal response of crystalline Kerr media in collinear optical Kerr gating. Optics Letters, 2011, 36, 2904.	3.3	10
34	Morphology-Preserving Sensitization of ZnO Nanorod Surfaces via Click-Chemistry. Journal of Physical Chemistry Letters, 2018, 9, 768-772.	4.6	10
35	Growth and characterization of ErAs:GaBi <i>x</i> As1â^'x. Applied Physics Letters, 2016, 109, .	3.3	9
36	Electronic–Vibrational Coupling and Electron Transfer. Journal of Physical Chemistry C, 2019, 123, 23760-23772.	3.1	9

#	Article	IF	CITATIONS
37	Spatial variation in carrier dynamics along a single CdSSe nanowire. Chemical Physics, 2014, 442, 128-131.	1.9	8
38	Vibrational Spectroscopy on Photoexcited Dye-Sensitized Films via Pump-Degenerate Four-Wave Mixing. Journal of Physical Chemistry A, 2018, 122, 2039-2045.	2.5	8
39	Synthesis and Properties of Perylene-Bridge-Anchor Chromophoric Compounds. Journal of Physical Chemistry A, 2020, 124, 6330-6343.	2.5	7
40	Enhancement-/Depletion-Mode TiO ₂ Thin-Film Transistors via O ₂ /N ₂ Preannealing. IEEE Transactions on Electron Devices, 2020, 67, 2346-2351.	3.0	7
41	Time-resolved electron transfer from the excited singlet state of anchored perylene into Ag(110). Chemical Physics Letters, 2007, 449, 82-85.	2.6	6
42	Improving the electrical performance of monolayer top-gated MoS ₂ transistors by post bis(trifluoromethane) sulfonamide treatment. Journal Physics D: Applied Physics, 2020, 53, 415106.	2.8	5
43	Femtosecond Luminescence Imaging for Single Nanoparticle Characterization. Journal of Physical Chemistry A, 2020, 124, 4583-4593.	2.5	4
44	Conformational and Binding Effects on Interfacial Electron Transfer from Dual-Linker Sensitizers. Journal of Physical Chemistry C, 2021, 125, 8667-8676.	3.1	4
45	Redox Processes at Semiconductors-Gerischer Model and Beyond. , 2014, , 1786-1798.		4
46	Ultrafast Probe of Carrier Diffusion and Nongeminate Processes in a Single CdSSe Nanowire. Journal of Spectroscopy, 2015, 2015, 1-6.	1.3	3
47	Comparison of ZnO surface modification with gas-phase propiolic acid at high and medium vacuum conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 041404.	2.1	3
48	A versatile strategy for controlled assembly of plasmonic metal/semiconductor hemispherical nano-heterostructure arrays. Nanoscale, 2020, 12, 17530-17537.	5.6	3
49	Ultrafast dynamics of single ZnO nanowires using ultraviolet femtosecond Kerr-gated wide-field fluorescence microscopy. Proceedings of SPIE, 2016, , .	0.8	1
50	Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy. Journal of Luminescence, 2017, 187, 92-95.	3.1	1
51	Evaluating Single Layer Graphene Micropatterns Induced by Ti:Sa Laser Irradiation. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800334.	1.8	1
52	Photoinduced ultrafast interfacial electron transfer probed with two-photon-photoemission. , 2007, , .		0
53	Synthesis of Hierarchical ZnO/CdSSe Heterostructure Nanotrees. Journal of Visualized Experiments, 2016, , .	0.3	0
54	Optical contrast calculations to quatify modifications induced on trilayer graphene by Ti:Sapphire laser thinning process. Applied Surface Science, 2020, 533, 147472.	6.1	0

#	Article	IF	CITATIONS
55	Ultrafast Wide-Field Fluorescence Microscopy. Springer Series in Chemical Physics, 2009, , 720-722.	0.2	0
56	Electron-phonon coupling in few layer WS2 measured by pump-degenerate four-wave mixing. , 2020, , .		0