
Peng Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4460086/publications.pdf Version: 2024-02-01

PENC CAO

#	Article	IF	CITATIONS
1	Endocrine disrupting toxicity of aryl organophosphate esters and mode of action. Critical Reviews in Environmental Science and Technology, 2023, 53, 1-18.	6.6	17
2	Photochemical impacts on the toxicity of PM _{2.5} . Critical Reviews in Environmental Science and Technology, 2022, 52, 130-156.	6.6	31
3	Biochar promotes arsenic sequestration on iron plaques and cell walls in rice roots. Chemosphere, 2022, 288, 132422.	4.2	9
4	Effects of copper and arsenic on their uptake and distribution in As-hyperaccumulator Pteris vittata. Environmental Pollution, 2022, 300, 118982.	3.7	6
5	Dermal bioaccessibility and cytotoxicity of heavy metals in urban soils from a typical plateau city: Implication for human health. Science of the Total Environment, 2022, 835, 155544.	3.9	7
6	Precision environmental health monitoring by longitudinal exposome and multi-omics profiling. Genome Research, 2022, 32, 1199-1214.	2.4	26
7	Sources, environmental levels, and health risks of PM2.5-bound polycyclic aromatic hydrocarbons in energy-producing cities in northern China. Environmental Pollution, 2021, 272, 116024.	3.7	9
8	Decoding personal biotic and abiotic airborne exposome. Nature Protocols, 2021, 16, 1129-1151.	5.5	21
9	The Exposome in the Era of One Health. Environmental Science & Technology, 2021, 55, 2790-2799.	4.6	65
10	The Exposome in the Era of the Quantified Self. Annual Review of Biomedical Data Science, 2021, 4, 255-277.	2.8	10
11	Exposome-wide Association Study for Metabolic Syndrome. Frontiers in Genetics, 2021, 12, 783930.	1.1	6
12	Biochar impact on chromium accumulation by rice through Fe microbial-induced redox transformation. Journal of Hazardous Materials, 2020, 388, 121807.	6.5	29
13	Background concentrations of trace metals As, Ba, Cd, Co, Cu, Ni, Pb, Se, and Zn in 214 Florida urban soils: Different cities and land uses. Environmental Pollution, 2020, 264, 114737.	3.7	54
14	Polycyclic aromatic hydrocarbons in processed yard trash. Waste Management and Research, 2020, 38, 825-830.	2.2	5
15	Emerging and legacy PAHs in urban soils of four small cities: Concentrations, distribution, and sources. Science of the Total Environment, 2019, 685, 463-470.	3.9	38
16	Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Critical Reviews in Environmental Science and Technology, 2019, 49, 2314-2358.	6.6	37
17	Contribution of Asphalt Products to Total and Bioaccessible Polycyclic Aromatic Hydrocarbons. International Journal of Environmental Research, 2019, 13, 499-509.	1.1	16
18	Emerging PAHs in urban soils: Concentrations, bioaccessibility, and spatial distribution. Science of the Total Environment, 2019, 670, 800-805.	3.9	36

Peng Gao

#	Article	IF	CITATIONS
19	Biochar impacts on phosphorus cycling in rice ecosystem. Chemosphere, 2019, 225, 311-319.	4.2	63
20	PAHs in urban soils of two Florida cities: Background concentrations, distribution, and sources. Chemosphere, 2019, 214, 220-227.	4.2	79
21	Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system. Chemosphere, 2019, 220, 644-650.	4.2	41
22	Cellular responses of normal (HL-7702) and cancerous (HepG2) hepatic cells to dust extract exposure. Chemosphere, 2018, 193, 1189-1197.	4.2	25
23	Metal concentrations in traditional and herbal teas and their potential risks to human health. Science of the Total Environment, 2018, 633, 649-657.	3.9	82
24	Interactive effects of chromate and arsenate on their uptake and speciation in Pteris ensiformis. Plant and Soil, 2018, 422, 515-526.	1.8	14
25	Source identification of PAHs in soils based on stable carbon isotopic signatures. Critical Reviews in Environmental Science and Technology, 2018, 48, 923-948.	6.6	31
26	Water extract of indoor dust induces tight junction disruption in normal human corneal epithelial cells. Environmental Pollution, 2018, 243, 301-307.	3.7	24
27	Human exposure to polycyclic aromatic hydrocarbons: Metabolomics perspective. Environment International, 2018, 119, 466-477.	4.8	164
28	Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health. Environmental Pollution, 2017, 230, 22-30.	3.7	51
29	Bioaccessibility of PAHs in contaminated soils: Comparison of five in vitro methods with Tenax as a sorption sink. Science of the Total Environment, 2017, 601-602, 968-974.	3.9	25
30	Relative bioavailability and bioaccessibility of PCBs in soils based on a mouse model and Tenax-improved physiologically-based extraction test. Chemosphere, 2017, 186, 709-715.	4.2	22
31	Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. Environment International, 2017, 99, 43-54.	4.8	168
32	Catabolism of (2E)-4-Hydroxy-2-nonenal via ω- and ω-1-Oxidation Stimulated by Ketogenic Diet. Journal of Biological Chemistry, 2014, 289, 32327-32338.	1.6	17
33	Slow-Injection Ultrasound-Assisted Emulsiffation–Microextraction for Determination of Phthalate Esters in Waterâ€. Journal of Chromatographic Science, 2014, 52, 1127-1134.	0.7	8
34	Ionic liquid-based totally organic solvent-free emulsification microextraction coupled with high performance liquid chromatography for the determination of three acaricides in fruit juice. Talanta, 2013, 115, 556-562.	2.9	21
35	Sequential dispersive liquid–liquid microextraction for the determination of aryloxyphenoxyâ€propionate herbicides in water. Journal of Separation Science, 2012, 35, 3389-3395.	1.3	46