Andrea Sartorel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4459507/publications.pdf

Version: 2024-02-01

88 papers

5,379 citations

38 h-index 72 g-index

106 all docs

106 docs citations

106 times ranked 4816 citing authors

#	Article	IF	CITATIONS
1	Polyoxometalate Embedding of a Tetraruthenium(IV)-oxo-core by Template-Directed Metalation of $[^3-SiW \cdot Sub \cdot 10 \cdot Sub \cdot 36 \cdot Sub $	13.7	571
2	Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nature Chemistry, 2010, 2, 826-831.	13.6	459
3	Tetrametallic molecular catalysts for photochemical water oxidation. Chemical Society Reviews, 2013, 42, 2262-2280.	38.1	310
4	Photocatalytic Water Oxidation: Tuning Light-Induced Electron Transfer by Molecular Co ₄ O ₄ Cores. Journal of the American Chemical Society, 2012, 134, 11104-11107.	13.7	196
5	Water Oxidation at a Tetraruthenate Core Stabilized by Polyoxometalate Ligands: Experimental and Computational Evidence To Trace the Competent Intermediates. Journal of the American Chemical Society, 2009, 131, 16051-16053.	13.7	195
6	Photocatalytic Water Oxidation by a Mixedâ€Valent Mn ^{III} ₃ Mn ^{IV} O ₃ Manganese Oxo Core that Mimics the Natural Oxygenâ€Evolving Center. Angewandte Chemie - International Edition, 2014, 53, 11182-11185.	13.8	180
7	Ruthenium polyoxometalate water splitting catalyst: very fast hole scavenging from photogenerated oxidants. Chemical Communications, 2010, 46, 3152.	4.1	165
8	Photo-induced water oxidation with tetra-nuclear ruthenium sensitizer and catalyst: A unique 4 \tilde{A} — 4 ruthenium interplay triggering high efficiency with low-energy visible light. Chemical Communications, 2010, 46, 4725.	4.1	162
9	Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nature Chemistry, 2019, 11, 146-153.	13.6	132
10	Photoinduced water oxidation using dendrimeric Ru(II) complexes as photosensitizers. Coordination Chemistry Reviews, 2011, 255, 2594-2601.	18.8	118
11	Chiral Strandbergâ€Type Molybdates [(RPO ₃) _{>6}) ₅) ₁₅] _{2â^' as Molecular Gelators: Selfâ€Assembled Fibrillar Nanostructures with Enhanced Optical Activity. Angewandte Chemie - International Edition, 2008, 47, 7275-7279.}	13.8	113
12	Hybrid Polyoxotungstates as Second-Generation POM-Based Catalysts for Microwave-Assisted H2O2Activation. Organic Letters, 2006, 8, 3671-3674.	4.6	110
13	Light-driven wateroxidation with a molecular tetra-cobalt(iii) cubanecluster. Faraday Discussions, 2012, 155, 177-190.	3.2	110
14	Photoinduced Water Oxidation by a Tetraruthenium Polyoxometalate Catalyst: Ion-pairing and Primary Processes with Ru(bpy) ₃ ²⁺ Photosensitizer. Inorganic Chemistry, 2012, 51, 7324-7331.	4.0	98
15	Shaping the beating heart of artificial photosynthesis: oxygenic metal oxide nano-clusters. Energy and Environmental Science, 2012, 5, 5592.	30.8	93
16	Knitting the Catalytic Pattern of Artificial Photosynthesis to a Hybrid Graphene Nanotexture. ACS Nano, 2013, 7, 811-817.	14.6	93
17	Is [Co4(H2O)2(α-PW9O34)2]10â^' a genuine molecular catalyst in photochemical water oxidation? Answers from time-resolved hole scavenging experiments. Chemical Communications, 2012, 48, 8808.	4.1	90
18	Light driven water oxidation by a single site cobalt salophen catalyst. Chemical Communications, 2013, 49, 9941.	4.1	83

#	Article	IF	Citations
19	Water oxidation surface mechanisms replicated by a totally inorganic tetraruthenium–oxo molecular complex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4917-4922.	7.1	80
20	Reactive Zr ^{IV} and Hf ^{IV} Butterfly Peroxides on Polyoxometalate Surfaces: Bridging the Gap between Homogeneous and Heterogeneous Catalysis. Chemistry - A European Journal, 2011, 17, 8371-8378.	3.3	77
21	Peroxo-Zr/Hf-Containing Undecatungstosilicates and -Germanates. Inorganic Chemistry, 2010, 49, 7-9.	4.0	75
22	Microwaveâ€Assisted Rapid Incorporation of Ruthenium into Lacunary Kegginâ€Type Polyoxotungstates: Oneâ€Step Synthesis, ⁹⁹ Ru, ¹⁸³ W NMR Characterization and Catalytic Activity of [PW ₁₁ O ₃₉ Ru ^{II} (DMSO)] ^{5–} . European Journal of Inorganic Chemistry, 2000, 2000, 17-20.	2.0	73
23	Tuning Iridium Photocatalysts and Light Irradiation for Enhanced CO ₂ Reduction. ACS Catalysis, 2017, 7, 154-160.	11.2	73
24	Asymmetric Tetraprotonation of \hat{l}^3 -[(SiO4)W10O32]8 \hat{a}° Triggers a Catalytic Epoxidation Reaction: Perspectives in the Assignment of the Active Catalyst. Angewandte Chemie - International Edition, 2007, 46, 3255-3258.	13.8	72
25	Enhanced Electrocatalytic Oxygen Evolution in Au–Fe Nanoalloys. Angewandte Chemie - International Edition, 2017, 56, 6589-6593.	13.8	72
26	Tailored Functionalization of Carbon Nanotubes for Electrocatalytic Water Splitting and Sustainable Energy Applications. ChemSusChem, 2011, 4, 1447-1451.	6.8	64
27	Bio-inspired oxidations with polyoxometalate catalysts. Journal of Molecular Catalysis A, 2006, 251, 93-99.	4.8	62
28	Electrospray Behavior of Lacunary Keggin-Type Polyoxotungstates [XW11O39]p (X = Si, P): Mass Spectrometric Evidence for a Concentration-Dependent Incorporation of an MOn+ (M = WVI, MoVI, VV) Unit into the Polyoxometalate Vacancy. European Journal of Inorganic Chemistry, 2003, 2003, 699-704.	2.0	58
29	Fast Catalytic Epoxidation with H ₂ O ₂ and [î³-SiW ₁₀ O ₃₆ (PhPO) ₂] ⁴⁻ in Ionic Liquids under Microwave Irradiation. Journal of Organic Chemistry, 2007, 72, 8954-8957.	3.2	55
30	Polyoxometalateâ€Based Nâ€Heterocyclic Carbene (NHC) Complexes for Palladiumâ€Mediated CC Coupling and Chloroaryl Dehalogenation Catalysis. Chemistry - A European Journal, 2010, 16, 10662-10666.	3.3	55
31	Salophen and salen oxo vanadium complexes as catalysts of sulfides oxidation with H2O2: Mechanistic insights. Catalysis Today, 2012, 192, 44-55.	4.4	55
32	Surface Immobilization of a Tetra-Ruthenium Substituted Polyoxometalate Water Oxidation Catalyst Through the Employment of Conducting Polypyrrole and the Layer-by-Layer (LBL) Technique. ACS Applied Materials & Diterfaces, 2014, 6, 8022-8031.	8.0	54
33	Optically Active Polyoxotungstates Bearing Chiral Organophosphonate Substituents. European Journal of Inorganic Chemistry, 2009, 2009, 5164-5174.	2.0	49
34	Naphthochromenones: Organic Bimodal Photocatalysts Engaging in Both Oxidative and Reductive Quenching Processes. Angewandte Chemie - International Edition, 2020, 59, 1302-1312.	13.8	48
35	Oxygenic polyoxometalates: a new class of molecular propellers. Chemical Communications, 2011, 47, 1716.	4.1	47
36	Nâ€Heterocyclic Dicarbene Iridium(III) Catalysts Enabling Water Oxidation under Visible Light Irradiation. European Journal of Inorganic Chemistry, 2014, 2014, 665-675.	2.0	44

#	Article	IF	CITATIONS
37	Heterogeneous and Homogeneous Routes in Water Oxidation Catalysis Starting from Cu ^{II} Complexes with Tetraaza Macrocyclic Ligands. Chemistry - an Asian Journal, 2016, 11, 1281-1287.	3.3	43
38	Photo-assisted water oxidation by high-nuclearity cobalt-oxo cores: tracing the catalyst fate during oxygen evolution turnover. Green Chemistry, 2017, 19, 2416-2426.	9.0	40
39	Photoinduced hydrogen evolution with new tetradentate cobalt(<scp>ii</scp>) complexes based on the TPMA ligand. Dalton Transactions, 2016, 45, 14764-14773.	3.3	38
40	Relativistic DFT Calculations of Polyoxotungstate 183W NMR Spectra: Insight into their Solution Structure. ChemPhysChem, 2003, 4, 517-519.	2.1	37
41	Hybrid Polyoxometalates: Merging Organic and Inorganic Domains for Enhanced Catalysis and Energy Applications. Israel Journal of Chemistry, 2011, 51, 259-274.	2.3	34
42	Artificial Photosynthesis Challenges: Water Oxidation at Nanostructured Interfaces. Topics in Current Chemistry, 2011, 303, 121-150.	4.0	34
43	Aerobic oxidation of cis-cyclooctene by iron-substituted polyoxotungstates: Evidence for a metal initiated auto-oxidation mechanism. Journal of Molecular Catalysis A, 2007, 262, 36-40.	4.8	32
44	Ironâ€Substituted Polyoxotungstates as Inorganic Synzymes: Evidence for a Biomimetic Pathway in the Catalytic Oxygenation of Catechols. Chemistry - A European Journal, 2009, 15, 7854-7858.	3.3	32
45	Working the Other Way Around: Photocatalytic Water Oxidation Triggered by Reductive Quenching of the Photoexcited Chromophore. Journal of Physical Chemistry C, 2015, 119, 2371-2379.	3.1	29
46	Water oxidation catalysis upon evolution of molecular Co(<scp>iii</scp>) cubanes in aqueous media. Faraday Discussions, 2015, 185, 121-141.	3.2	29
47	Positive graphene by chemical design: tuning supramolecular strategies for functional surfaces. Chemical Communications, 2014, 50, 885-887.	4.1	26
48	Carbon Dioxide Reduction Mediated by Iron Catalysts: Mechanism and Intermediates That Guide Selectivity. ACS Omega, 2020, 5, 21309-21319.	3.5	25
49	Catalytic Strategies for Sustainable Oxidations in Water. Synthesis, 2008, 2008, 1971-1978.	2.3	23
50	Dendron-functionalized multiwalled carbon nanotubes incorporating polyoxometalates for water-splitting catalysis. Pure and Applied Chemistry, 2011, 83, 1529-1542.	1.9	23
51	Organicâ€Inorganic Molecular Nanoâ€Sensors: A Bisâ€Dansylated Tweezerâ€Like Fluoroionophore Integrating a Polyoxometalate Core. European Journal of Organic Chemistry, 2012, 2012, 281-289.	2.4	23
52	Water oxidation electrocatalysis with iron oxide nanoparticles prepared via laser ablation. Journal of Energy Chemistry, 2016, 25, 246-250.	12.9	23
53	Visible Light Driven Photoanodes for Water Oxidation Based on Novel r-GO/ \hat{l}^2 -Cu2V2O7/TiO2 Nanorods Composites. Nanomaterials, 2018, 8, 544.	4.1	23
54	Dynamic Motion of Ruâ€Polyoxometalate Ions (POMs) on Functionalized Fewâ€Layer Graphene. Small, 2013, 9, 3922-3927.	10.0	22

#	Article	IF	Citations
55	A Co(<scp>ii</scp>)–Ru(<scp>ii</scp>) dyad relevant to light-driven water oxidation catalysis. Physical Chemistry Chemical Physics, 2014, 16, 12000-12007.	2.8	22
56	A Bioinspired System for Light-Driven Water Oxidation with a Porphyrin Sensitizer and a Tetrametallic Molecular Catalyst. European Journal of Inorganic Chemistry, 2015, 2015, 3467-3477.	2.0	22
57	Cobalt based water oxidation catalysis with photogenerated Ru(bpy) 3 3+: Different kinetics and competent species starting from a molecular polyoxometalate and metal oxide nanoparticles capped with a bisphosphonate alendronate pendant. Catalysis Today, 2017, 290, 39-50.	4.4	20
58	Mechanistic Insights into Lightâ€Activated Catalysis for Water Oxidation. European Journal of Inorganic Chemistry, 2019, 2019, 2027-2039.	2.0	20
59	Fluorinated Zn ^{II} Porphyrins for Dye-Sensitized Aqueous Photoelectrosynthetic Cells. ACS Applied Materials & Decrease Applied &	8.0	19
60	Light-Driven Water Oxidation with the ⟨b⟩lr-blue⟨ b⟩ Catalyst and the Ru(bpy)⟨sub⟩3⟨ sub⟩⟨sup⟩2+⟨ sup⟩ S⟨sub⟩2⟨ sub⟩0⟨sub⟩8⟨ sub⟩⟨sup⟩2â€"⟨ sup⟩ Cycle: Photogeneration of Active Dimers, Electron-Transfer Kinetics, and Light Synchronization for Oxygen Evolution with High Quantum Efficiency. Inorganic Chemistry, 2019, 58, 16537-16545.	4.0	19
61	Photoanodes for water oxidation with visible light based on a pentacyclic quinoid organic dye enabling proton-coupled electron transfer. Chemical Communications, 2020, 56, 2248-2251.	4.1	19
62	Ruthenium based photosensitizer/catalyst supramolecular architectures in light driven water oxidation. Inorganica Chimica Acta, 2017, 454, 171-175.	2.4	18
63	H ₂ O ₂ activation by heteropolyacids with defect structures: the case of <i>γ</i> â€{(XO ₄)W ₁₀ O ₃₂] ^{nâ^²} (X = Si, Ge, nâ€%	‰=â€‱8;	Xâ € ‰=
64	Clean rhodium nanoparticles prepared by laser ablation in liquid for high performance electrocatalysis of the hydrogen evolution reaction. Nanoscale Advances, 2019, 1, 4296-4300.	4.6	17
65	Proton coupled electron transfer from Co ₃ O ₄ nanoparticles to photogenerated Ru(bpy) ₃ ³⁺ : base catalysis and buffer effect. Sustainable Energy and Fuels, 2018, 2, 1951-1956.	4.9	12
66	Tailored Crafting of Core–Shell Cobalt-Hydroxides@Polyfluoroaniline Nanostructures with Strongly Coupled Interfaces and Improved Hydrophilicity to Enable Efficient Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2020, 8, 6127-6133.	6.7	12
67	Oxygenation by Ruthenium Monosubstituted Polyoxotungstates in Aqueous Solution: Experimental and Computational Dissection of a Ru(III)–Ru(V) Catalytic Cycle. Chemistry - A European Journal, 2014, 20, 10932-10943.	3.3	11
68	Hydrogen peroxide activation by fluorophilic polyoxotungstates for fast and selective oxygen transfer catalysis. Dalton Transactions, 2016, 45, 14544-14548.	3.3	11
69	Electrochemical Conversion of CO ₂ to CO by a Competent Fe ^I Intermediate Bearing a Schiff Base Ligand. ChemSusChem, 2020, 13, 4111-4120.	6.8	11
70	Novel iridium complexes with N-heterocyclic dicarbene ligands in light-driven water oxidation catalysis: photon management, ligand effect and catalyst evolution. Dalton Transactions, 2020, 49, 2696-2705.	3.3	11
71	Artificial photosynthesis: photoanodes based on polyquinoid dyes onto mesoporous tin oxide surface. Photochemical and Photobiological Sciences, 2021, 20, 1243-1255.	2.9	10
72	Hydrogen Evolution by Fe ^{III} Molecular Electrocatalysts Interconverting between Mono and Diâ€Nuclear Structures in Aqueous Phase. ChemSusChem, 2017, 10, 4430-4435.	6.8	9

#	Article	IF	Citations
73	Transparent Polymeric Formulations Effective against SARS-CoV-2 Infection. ACS Applied Materials & SARS-CoV-2 Infection.	8.0	9
74	Chelating di(N-heterocyclic carbene) complexes of iridium(III): Structural analysis, electrochemical characterisation and catalytic oxidation of water. Journal of Organometallic Chemistry, 2020, 917, 121260.	1.8	7
75	Photo-induced water oxidation: New photocatalytic processes and materials. Photochemistry, 0, , 274-294.	0.2	7
76	Beyond Water Oxidation: Hybrid, Molecular-Based Photoanodes for the Production of Value-Added Organics. Frontiers in Chemistry, 2022, 10, .	3.6	7
77	Enhanced Electrocatalytic Oxygen Evolution in Au–Fe Nanoalloys. Angewandte Chemie, 2017, 129, 6689-6693.	2.0	5
78	Water Oxidation Catalysis by Molecular Metal-Oxides. Energy Procedia, 2012, 22, 78-87.	1.8	4
79	N-Heterocyclic Dicarbene Iridium(III) Catalysts Enabling Water Oxidation under Visible Light Irradiation. European Journal of Inorganic Chemistry, 2014, 2014, 568-568.	2.0	3
80	Natural and artificial photosynthesis: general discussion. Faraday Discussions, 2015, 185, 187-217.	3.2	3
81	Waterâ€Assisted Concerted Protonâ€Electron Transfer at Co(II)â€Aquo Sites in Polyoxotungstates With Photogenerated Ru III (bpy) 3 3+ Oxidant. ChemPhysChem, 2021, 22, 1208-1218.	2.1	3
82	Microwaveâ€Assisted 1,3â€Dipolar Cycloaddition of Azomethine Ylides to [60]Fullerene: Thermodynamic Control of Bisâ€Addition with Ionic Liquids Additives. European Journal of Organic Chemistry, 2021, 2021, 3545-3551.	2.4	3
83	Fel Intermediates in N2O2 Schiff Base Complexes: Effect of Electronic Character of the Ligand and of the Proton Donor on the Reactivity with Carbon Dioxide. Energies, 2021, 14, 5723.	3.1	3
84	Polyoxometalates Catalysts for Sustainable Oxidations and Energy Applications. , 2014, , 586-630.		2
85	Basicity as a Thermodynamic Descriptor of Carbanions Reactivity with Carbon Dioxide: Application to the Carboxylation of $\hat{1}\pm,\hat{1}^2$ -Unsaturated Ketones. Frontiers in Chemistry, 2021, 9, 783993.	3.6	2
86	Innentitelbild: Photocatalytic Water Oxidation by a Mixed-Valent MnIII3MnIVO3Manganese Oxo Core that Mimics the Natural Oxygen-Evolving Center (Angew. Chem. 42/2014). Angewandte Chemie, 2014, 126, 11280-11280.	2.0	0
87	Mechanistic Insights into Light-Activated Catalysis for Water Oxidation. European Journal of Inorganic Chemistry, 2019, 2019, 2013-2013.	2.0	0
88	Tracking Ultrafast Charge Separation in a PBI-based Biomimetic Complex for Oxygen Evolution. , 2020, , .		0