Gunnar Myhre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4459080/publications.pdf

Version: 2024-02-01

9234 11288 23,909 212 74 136 citations g-index h-index papers 331 331 331 15832 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Estimation of the direct radiative forcing due to sulfate and soot aerosols. Tellus, Series B: Chemical and Physical Meteorology, 2022, 50, 463.	0.8	85
2	Costs and global impacts of black carbon abatement strategies. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 625.	0.8	60
3	Present-day contribution of anthropogenic emissions from China to the global burden and radiative forcing of aerosol and ozone. Tellus, Series B: Chemical and Physical Meteorology, 2022, 61, 618.	0.8	13
4	Understanding model diversity in future precipitation projections for South America. Climate Dynamics, 2022, 58, 1329-1347.	1.7	3
5	Future urban heat island influence on precipitation. Climate Dynamics, 2022, 58, 3393-3403.	1.7	23
6	Scientific data from precipitation driver response model intercomparison project. Scientific Data, 2022, 9, 123.	2.4	5
7	Biomass burning aerosols in most climate models are too absorbing. Nature Communications, 2021, 12, 277.	5.8	84
8	AeroCom phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmospheric Chemistry and Physics, 2021, 21, 87-128.	1.9	96
9	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	1.9	65
10	Effective Radiative Forcing in a GCM With Fixed Surface Temperatures. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033880.	1.2	17
11	Observational Evidence of Increasing Global Radiative Forcing. Geophysical Research Letters, 2021, 48, e2020GL091585.	1.5	45
12	Energy Budget Constraints on the Time History of Aerosol Forcing and Climate Sensitivity. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033622.	1.2	25
13	Understanding Topâ€ofâ€Atmosphere Flux Bias in the AeroCom Phase III Models: A Clearâ€Sky Perspective. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002584.	1.3	4
14	Distinct surface response to black carbon aerosols. Atmospheric Chemistry and Physics, 2021, 21, 13797-13809.	1.9	2
15	Similar patterns of tropical precipitation and circulation changes under solar and greenhouse gas forcing. Environmental Research Letters, 2021, 16, 104045.	2.2	2
16	Aerosol absorption in global models from AeroCom phase III. Atmospheric Chemistry and Physics, 2021, 21, 15929-15947.	1.9	27
17	A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics, 2020, 55, 3-34.	1.7	176
18	Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics, 2020, 58, e2019RG000660.	9.0	424

#	Article	IF	Citations
19	Updated Global Warming Potentials and Radiative Efficiencies of Halocarbons and Other Weak Atmospheric Absorbers. Reviews of Geophysics, 2020, 58, e2019RG000691.	9.0	60
20	Historical total ozone radiative forcing derived from CMIP6 simulations. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	44
21	The effect of rapid adjustments to halocarbons and N2O on radiative forcing. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	7
22	Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Science Advances, 2020, 6, eaaz6433.	4.7	33
23	Black Carbon and Precipitation: An Energetics Perspective. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032239.	1.2	8
24	A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmospheric Chemistry and Physics, 2020, 20, 1341-1361.	1.9	24
25	The Spectral Nature of Stratospheric Temperature Adjustment and its Application to Halocarbon Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001951.	1.3	26
26	A global model–measurement evaluation of particle light scattering coefficients at elevated relative humidity. Atmospheric Chemistry and Physics, 2020, 20, 10231-10258.	1.9	19
27	Distinct responses of Asian summer monsoon to black carbon aerosols and greenhouse gases. Atmospheric Chemistry and Physics, 2020, 20, 11823-11839.	1.9	15
28	Evaluation of climate model aerosol trends with ground-based observations over the last 2Âdecades – an AeroCom and CMIP6 analysis. Atmospheric Chemistry and Physics, 2020, 20, 13355-13378.	1.9	38
29	How aerosols and greenhouse gases influence the diurnal temperature range. Atmospheric Chemistry and Physics, 2020, 20, 13467-13480.	1.9	23
30	Response of surface shortwave cloud radiative effect to greenhouse gases and aerosols and its impact on summer maximum temperature. Atmospheric Chemistry and Physics, 2020, 20, 8251-8266.	1.9	7
31	Cloudy-sky contributions to the direct aerosol effect. Atmospheric Chemistry and Physics, 2020, 20, 8855-8865.	1.9	8
32	Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 9591-9618.	1.9	149
33	Radiative forcing of climate change from the Copernicus reanalysis of atmospheric composition. Earth System Science Data, 2020, 12, 1649-1677.	3.7	22
34	The Southern Hemisphere Midlatitude Circulation Response to Rapid Adjustments and Sea Surface Temperature Driven Feedbacks. Journal of Climate, 2020, 33, 9673-9690.	1.2	3
35	Extreme wet and dry conditions affected differently by greenhouse gases and aerosols. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	21
36	Emerging Asian aerosol patterns. Nature Geoscience, 2019, 12, 582-584.	5.4	64

3

#	Article	IF	Citations
37	Radiative Forcing of Climate: The Historical Evolution of the Radiative Forcing Concept, the Forcing Agents and their Quantification, and Applications. Meteorological Monographs, 2019, 59, 14.1-14.101.	5.0	52
38	Frequency of extreme precipitation increases extensively with event rareness under global warming. Scientific Reports, 2019, 9, 16063.	1.6	393
39	Arctic Amplification Response to Individual Climate Drivers. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6698-6717.	1.2	39
40	Comparison of Effective Radiative Forcing Calculations Using Multiple Methods, Drivers, and Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4382-4394.	1.2	21
41	Very Strong Atmospheric Methane Growth in the 4ÂYears 2014–2017: Implications for the Paris Agreement. Global Biogeochemical Cycles, 2019, 33, 318-342.	1.9	353
42	Efficacy of Climate Forcings in PDRMIP Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12824-12844.	1.2	55
43	Water vapour adjustments and responses differ between climate drivers. Atmospheric Chemistry and Physics, 2019, 19, 12887-12899.	1.9	29
44	Intensification of summer precipitation with shorter time-scales in Europe. Environmental Research Letters, 2019, 14, 124050.	2.2	31
45	Anthropogenic aerosol forcing under the Shared Socioeconomic Pathways. Atmospheric Chemistry and Physics, 2019, 19, 13827-13839.	1.9	43
46	Global and regional trends of atmospheric sulfur. Scientific Reports, 2019, 9, 953.	1.6	166
47	Spatial Representativeness Error in the Ground‣evel Observation Networks for Black Carbon Radiation Absorption. Geophysical Research Letters, 2018, 45, 2106-2114.	1.5	18
48	Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions. Nature Geoscience, 2018, 11, 178-184.	5.4	56
49	A PDRMIP Multimodel Study on the Impacts of Regional Aerosol Forcings on Global and Regional Precipitation. Journal of Climate, 2018, 31, 4429-4447.	1.2	83
50	Lifetimes, direct and indirect radiative forcing, and global warming potentials of ethane (C ₂ H ₆), propane (C ₃ H ₈), and butane (C ₄ H ₁₀). Atmospheric Science Letters, 2018, 19, e804.	0.8	31
51	Aerosol Absorption: Progress Towards Global and Regional Constraints. Current Climate Change Reports, 2018, 4, 65-83.	2.8	103
52	Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying. Geophysical Research Letters, 2018, 45, 2815-2825.	1.5	35
53	Weak hydrological sensitivity to temperature change over land, independent of climate forcing. Npj Climate and Atmospheric Science, $2018,1,\ldots$	2.6	33
54	Concentrations and radiative forcing of anthropogenic aerosols from 1750 to 2014 simulated with the OsloACTM3 and CEDS emission inventory. Geoscientific Model Development, 2018, 11, 4909-4931.	1.3	35

#	Article	IF	CITATIONS
55	Dynamical response of Mediterranean precipitation to greenhouse gases and aerosols. Atmospheric Chemistry and Physics, 2018, 18, 8439-8452.	1.9	40
56	Comparison and Evaluation of Statistical Rainfall Disaggregation and High-Resolution Dynamical Downscaling over Complex Terrain. Journal of Hydrometeorology, 2018, 19, 1973-1982.	0.7	17
57	Drivers of Precipitation Change: An Energetic Understanding. Journal of Climate, 2018, 31, 9641-9657.	1.2	63
58	Understanding Rapid Adjustments to Diverse Forcing Agents. Geophysical Research Letters, 2018, 45, 12023-12031.	1.5	113
59	The Changing Seasonality of Extreme Daily Precipitation. Geophysical Research Letters, 2018, 45, 11,352.	1.5	37
60	Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes. Geophysical Research Letters, 2018, 45, 11399-11405.	1.5	26
61	Sensible heat has significantly affected the global hydrological cycle over the historical period. Nature Communications, 2018, 9, 1922.	5.8	44
62	Climate sensitivity estimates $\hat{a}\in$ sensitivity to radiative forcing time series and observational data. Earth System Dynamics, 2018, 9, 879-894.	2.7	21
63	Inferring Surface Albedo Prediction Error Linked to Forest Structure at High Latitudes. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4910-4925.	1.2	13
64	Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature, 2017, 546, 485-491.	13.7	191
65	Quasiâ€Additivity of the Radiative Effects of Marine Cloud Brightening and Stratospheric Sulfate Aerosol Injection. Geophysical Research Letters, 2017, 44, 11,158.	1.5	12
66	Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11462-11481.	1.2	118
67	Halfway to doubling of CO2 radiative forcing. Nature Geoscience, 2017, 10, 710-711.	5.4	13
68	Slow and fast responses of mean and extreme precipitation to different forcing in CMIP5 simulations. Geophysical Research Letters, 2017, 44, 6383-6390.	1.5	32
69	PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and Preliminary Results. Bulletin of the American Meteorological Society, 2017, 98, 1185-1198.	1.7	116
70	Aerosols at the poles: an AeroCom Phase II multi-model evaluation. Atmospheric Chemistry and Physics, 2017, 17, 12197-12218.	1.9	58
71	Investigation of global particulate nitrate from the AeroCom phaseÂIII experiment. Atmospheric Chemistry and Physics, 2017, 17, 12911-12940.	1.9	99
72	Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the periodÂ1990–2015. Atmospheric Chemistry and Physics, 2017, 17, 2709-2720.	1.9	87

#	Article	IF	Citations
73	AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6. Geoscientific Model Development, 2017, 10, 585-607.	1.3	202
74	Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophysical Research Letters, 2016, 43, 4624-4631.	1.5	74
75	Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7254-7283.	1.2	80
76	Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study. Geophysical Research Letters, 2016, 43, 2782-2791.	1.5	179
77	Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season. Geophysical Research Letters, 2016, 43, 3991-4000.	1.5	23
78	Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa. Nature Communications, 2016, 7, 11236.	5.8	75
79	Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters, 2016, 43, 12,614.	1.5	529
80	Recommendations for diagnosing effective radiative forcing from climate models for CMIP6. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,460.	1.2	161
81	Jury is still out on the radiative forcing by black carbon. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5092-3.	3.3	43
82	Global and regional radiative forcing from 20â€ ⁻ % reductions in BC, OC and SO<sub>4</sub> – an HTAP2 multi-model study. Atmospheric Chemistry and Physics, 2016, 16, 13579-13599.	1.9	42
83	Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008. Atmospheric Chemistry and Physics, 2016, 16, 10765-10792.	1.9	17
84	Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions. Atmospheric Chemistry and Physics, 2016, 16, 13885-13910.	1.9	17
85	Atmospheric methane evolution the last 40 years. Atmospheric Chemistry and Physics, 2016, 16, 3099-3126.	1.9	67
86	An assessment of precipitation adjustment and feedback computation methods. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,608-11,619.	1.2	8
87	Manmade Changes in Cirrus Clouds from 1984 to 2007: A Preliminary Study. Green Energy and Technology, 2016, , 827-836.	0.4	2
88	Climate response to externally mixed black carbon as a function of altitude. Journal of Geophysical Research D: Atmospheres, 2015, 120, 2913-2927.	1.2	59
89	Aerosol singleâ€scattering albedo over the global oceans: Comparing PARASOL retrievals with AERONET, OMI, and AeroCom models estimates. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9814-9836.	1.2	58
90	Evaluating the climate and air quality impacts of short-lived pollutants. Atmospheric Chemistry and Physics, 2015, 15, 10529-10566.	1.9	365

#	Article	IF	Citations
91	Standard climate models radiation codes underestimate black carbon radiative forcing. Atmospheric Chemistry and Physics, 2015, 15, 2883-2888.	1.9	29
92	Climate responses to anthropogenic emissions of short-lived climate pollutants. Atmospheric Chemistry and Physics, 2015, 15, 8201-8216.	1.9	69
93	Radiative forcing bias of simulated surface albedo modifications linked to forest cover changes at northern latitudes. Biogeosciences, 2015, 12, 2195-2205.	1.3	12
94	Declining uncertainty in transient climate response as CO2 forcing dominates future climateÂchange. Nature Geoscience, 2015, 8, 181-185.	5.4	38
95	A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth System Dynamics, 2014, 5, 139-175.	2.7	51
96	Climate Penalty for Shifting Shipping to the Arctic. Environmental Science & E	4.6	29
97	How shorter black carbon lifetime alters its climate effect. Nature Communications, 2014, 5, 5065.	5.8	108
98	Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx emission impact on O3 photochemistry. Atmospheric Environment, 2014, 95, 468-479.	1.9	46
99	Upward adjustment needed for aerosol radiative forcing uncertainty. Nature Climate Change, 2014, 4, 230-232.	8.1	19
100	Anthropogenic and Natural Radiative Forcing. , 2014, , 659-740.		786
101	The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmospheric Chemistry and Physics, 2014, 14, 10845-10895.	1.9	363
102	Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmospheric Chemistry and Physics, 2014, 14, 12465-12477.	1.9	157
103	Effect of water vapor on the determination of aerosol direct radiative effect based on the AERONET fluxes. Atmospheric Chemistry and Physics, 2014, 14, 6103-6110.	1.9	11
104	Energy budget constraints on climate response. Nature Geoscience, 2013, 6, 415-416.	5.4	270
105	Global warming potentials and radiative efficiencies of halocarbons and related compounds: A comprehensive review. Reviews of Geophysics, 2013, 51, 300-378.	9.0	390
106	Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 2013, 13, 1853-1877.	1.9	779
107	Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 2607-2634.	1.9	125
108	Reducing CO ₂ from shipping – do non-CO ₂ effects matter?. Atmospheric Chemistry and Physics, 2013, 13, 4183-4201.	1.9	29

#	Article	IF	CITATIONS
109	Corrigendum to "Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)" published in Atmos. Chem. Phys., 13, 2607–2634, 2013. Atmospheric Chemistry and Physics, 2013, 13, 6553-6554.	1.9	3
110	Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment. Atmospheric Chemistry and Physics, 2013, 13, 2347-2379.	1.9	94
111	Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 3063-3085.	1.9	361
112	Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect. Atmospheric Chemistry and Physics, 2013, 13, 7895-7901.	1.9	32
113	Environmental impacts of shipping in 2030 with a particular focus on the Arctic region. Atmospheric Chemistry and Physics, 2013, 13, 1941-1955.	1.9	35
114	Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmospheric Chemistry and Physics, 2013, 13, 2423-2434.	1.9	223
115	Future methane, hydroxyl, and their uncertainties: key climate and emission parameters for future predictions. Atmospheric Chemistry and Physics, 2013, 13, 285-302.	1.9	171
116	Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2939-2974.	1.9	395
117	Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry and Physics, 2013, 13, 3245-3270.	1.9	143
118	Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmospheric Chemistry and Physics, 2013, 13, 4057-4072.	1.9	61
119	The effect of carbonâ€nitrogen coupling on the reduced land carbon sink caused by tropospheric ozone. Geophysical Research Letters, 2013, 40, 3227-3231.	1.5	15
120	Hydrological sensitivity to greenhouse gases and aerosols in a global climate model. Geophysical Research Letters, 2013, 40, 1432-1438.	1.5	55
121	Corrigendum to "The HNO ₃ forming branch of the HO ₂ + NO reaction: pre-industrial-to-present trends in atmospheric species and radiative forcings" published in Atmos. Chem. Phys., 11, 8929–8943, 2011. Atmospheric Chemistry and Physics. 2012. 12. 7725-7725.	1.9	3
122	Future impact of traffic emissions on atmospheric ozone and OH based on two scenarios. Atmospheric Chemistry and Physics, 2012, 12, 12211-12225.	1.9	13
123	Short-lived climate forcers from current shipping and petroleum activities in the Arctic. Atmospheric Chemistry and Physics, 2012, 12, 1979-1993.	1.9	64
124	Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. Journal of Geophysical Research, 2012, 117, .	3.3	170
125	Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content. Environmetrics, 2012, 23, 253-271.	0.6	78
126	Communicating the Probabilities of Extreme Surface Temperature Outcomes. Atmospheric and Climate Sciences, 2012, 02, 538-545.	0.1	0

#	Article	IF	Citations
127	Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	55
128	Evaluation of radiation scheme performance within chemistry climate models. Journal of Geophysical Research, 2011, 116, .	3.3	77
129	Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	104
130	Future impact of non-land based traffic emissions on atmospheric ozone and OH – an optimistic scenario and a possible mitigation strategy. Atmospheric Chemistry and Physics, 2011, 11, 11293-11317.	1.9	30
131	Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmospheric Chemistry and Physics, 2011, 11, 11827-11857.	1.9	137
132	Black carbon in the atmosphere and snow, from pre-industrial times until present. Atmospheric Chemistry and Physics, 2011, 11, 6809-6836.	1.9	104
133	Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 2011, 11, 7781-7816.	1.9	839
134	The HNO ₃ forming branch of the HO ₂ + NO reaction: pre-industrial-to-present trends in atmospheric species and radiative forcings. Atmospheric Chemistry and Physics, 2011, 11, 8929-8943.	1.9	51
135	Inferring absorbing organic carbon content from AERONET data. Atmospheric Chemistry and Physics, 2011, 11, 215-225.	1.9	175
136	Radiative forcing due to changes in ozone and methane caused by the transport sector. Atmospheric Environment, 2011, 45, 387-394.	1.9	87
137	Mitigation of short-lived heating components may lead to unwanted long-term consequences. Atmospheric Environment, 2011, 45, 6103-6106.	1.9	22
138	Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation. Atmospheric Chemistry and Physics, 2010, 10, 4477-4489.	1.9	78
139	Corrigendum to "Evaluation of black carbon estimations in global aerosol models" published in Atmos. Chem. Phys., 9, 9001-9026, 2009. Atmospheric Chemistry and Physics, 2010, 10, 79-81.	1.9	17
140	Anthropogenic land cover changes in a GCM with surface albedo changes based on MODIS data. International Journal of Climatology, 2010, 30, 2105-2117.	1.5	44
141	Addendum to  A fast method for updating global fossil fuel carbon dioxide emissions'. Environmental Research Letters, 2010, 5, 039701.	2.2	2
142	Impacts of the Large Increase in International Ship Traffic 2000â^'2007 on Tropospheric Ozone and Methane. Environmental Science & Environmental Scien	4.6	43
143	A fast method for updating global fossil fuel carbon dioxide emissions. Environmental Research Letters, 2009, 4, 034012.	2.2	27
144	Global temperature change from the transport sectors: Historical development and future scenarios. Atmospheric Environment, 2009, 43, 6260-6270.	1.9	80

#	Article	IF	Citations
145	Radiative forcing from household fuel burning in Asiaâ~†. Atmospheric Environment, 2009, 43, 5674-5681.	1.9	26
146	Atmospheric composition change: Climate–Chemistry interactions. Atmospheric Environment, 2009, 43, 5138-5192.	1.9	243
147	Modelling of chemical and physical aerosol properties during the ADRIEX aerosol campaign. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 53-66.	1.0	8
148	Consistency Between Satellite-Derived and Modeled Estimates of the Direct Aerosol Effect. Science, 2009, 325, 187-190.	6.0	260
149	The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY. Atmospheric Chemistry and Physics, 2009, 9, 3113-3136.	1.9	143
150	Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmospheric Chemistry and Physics, 2009, 9, 1365-1392.	1.9	187
151	Anthropogenic influence on SOA and the resulting radiative forcing. Atmospheric Chemistry and Physics, 2009, 9, 2715-2728.	1.9	74
152	Extensive reduction of surface UV radiation since 1750 in world's populated regions. Atmospheric Chemistry and Physics, 2009, 9, 7737-7751.	1.9	7
153	Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics, 2009, 9, 9001-9026.	1.9	585
154	Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails. Meteorologische Zeitschrift, 2009, 18, 585-596.	0.5	63
155	Overview of the biosphere-aerosol-cloud-climate interactions (BACCI) studies. Tellus, Series B: Chemical and Physical Meteorology, 2008, 60, 300-317.	0.8	12
156	Ocean temperature forcing by aerosols across the Atlantic tropical cyclone development region. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	51
157	Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomassâ€burning Experiment (DABEX). Journal of Geophysical Research, 2008, 113, .	3.3	34
158	Overview of the Dust and Biomassâ€burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Periodâ€0. Journal of Geophysical Research, 2008, 113, .	3.3	188
159	Climate forcing from the transport sectors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 454-458.	3.3	269
160	Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data. Atmospheric Chemistry and Physics, 2008, 8, 7373-7387.	1.9	80
161	Human Impact on Direct and Diffuse Solar Radiation during the Industrial Era. Journal of Climate, 2007, 20, 4874-4883.	1.2	81
162	Twenty-five years of continuous sulphur dioxide emission reduction in Europe. Atmospheric Chemistry and Physics, 2007, 7, 3663-3681.	1.9	326

#	Article	IF	CITATIONS
163	The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment. Atmospheric Chemistry and Physics, 2007, 7, 4489-4501.	1.9	228
164	Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006. Atmospheric Chemistry and Physics, 2007, 7, 5899-5915.	1.9	40
165	Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models. Atmospheric Chemistry and Physics, 2007, 7, 3081-3101.	1.9	133
166	Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2. Atmospheric Chemistry and Physics, 2007, 7, 5675-5694.	1.9	105
167	Radiative forcing due to stratospheric water vapour from CH4oxidation. Geophysical Research Letters, 2007, 34, .	1.5	53
168	Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 115-129.	0.8	235
169	Sulphate trends in Europe: are we able to model the recent observed decrease. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 773-786.	0.8	21
170	Implications of Climate Change on Health Impact of Forest Fires in Europe. Epidemiology, 2007, 18, S106-S107.	1.2	1
171	Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, .	0.8	3
172	An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmospheric Chemistry and Physics, 2006, 6, 1815-1834.	1.9	697
173	Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmospheric Chemistry and Physics, 2006, 6, 575-599.	1.9	140
174	Combined observational and modeling based study of the aerosol indirect effect. Atmospheric Chemistry and Physics, 2006, 6, 3583-3601.	1.9	35
175	Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmospheric Chemistry and Physics, 2006, 6, 5225-5246.	1.9	633
176	Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmospheric Chemistry and Physics, 2006, 6, 1777-1813.	1.9	1,202
177	Modelling of nitrate and ammonium-containing aerosols in presence of sea salt. Atmospheric Chemistry and Physics, 2006, 6, 4809-4821.	1.9	67
178	Line-by-line calculations of thermal infrared radiation representative for global condition: CFC-12 as an example. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 97, 317-331.	1.1	20
179	Abatement of Greenhouse Gases: Does Location Matter?. Climatic Change, 2006, 74, 377-411.	1.7	103
180	Aviation radiative forcing in 2000: An update on IPCC (1999). Meteorologische Zeitschrift, 2005, 14, 555-561.	0.5	251

#	Article	IF	Citations
181	Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000. Atmospheric Chemistry and Physics, 2005, 5, 1697-1719.	1.9	82
182	Is there a trend in cirrus cloud cover due to aircraft traffic?. Atmospheric Chemistry and Physics, 2005, 5, 2155-2162.	1.9	72
183	Resolution of the uncertainties in the radiative forcing of HFC-134a. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 93, 447-460.	1.1	29
184	Model simulations of dust sources and transport in the global atmosphere: Effects of soil erodibility and wind speed variability. Journal of Geophysical Research, 2005, 110, .	3.3	126
185	Radiative effect of surface albedo change from biomass burning. Geophysical Research Letters, 2005, 32, .	1.5	39
186	Radiative forcing due to anthropogenic vegetation change based on MODIS surface albedo data. Geophysical Research Letters, 2005, 32, .	1.5	72
187	The radiative effect of the anthropogenic influence on the stratospheric sulfate aerosol layer. Tellus, Series B: Chemical and Physical Meteorology, 2004, 56, 294-299.	0.8	31
188	Atmospheric gas-phase degradation and global warming potentials of 2-fluoroethanol, 2,2-difluoroethanol, and 2,2,2-trifluoroethanol. Atmospheric Environment, 2004, 38, 6725-6735.	1.9	51
189	Direct human influence of irrigation on atmospheric water vapour and climate. Climate Dynamics, 2004, 22, 597-603.	1.7	274
190	Updated radiative forcing estimates of four halocarbons. Journal of Geophysical Research, 2004, 109, .	3.3	25
191	Uncertainties in the Radiative Forcing Due to Sulfate Aerosols. Journals of the Atmospheric Sciences, 2004, 61, 485-498.	0.6	48
192	Intercomparison of Satellite Retrieved Aerosol Optical Depth over the Ocean. Journals of the Atmospheric Sciences, 2004, 61, 499-513.	0.6	90
193	Modeling the solar radiative impact of aerosols from biomass burning during the Southern African Regional Science Initiative (SAFARI-2000) experiment. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	7 3
194	Modeling the radiative impact of mineral dust during the Saharan Dust Experiment (SHADE) campaign. Journal of Geophysical Research, 2003, 108, .	3.3	124
195	Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	153
196	Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. Journal of Geophysical Research, 2003, 108, .	3.3	320
197	Measurement and modeling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE). Journal of Geophysical Research, 2003, 108, .	3.3	161
198	Uncertainties in Radiative Forcing due to Surface Albedo Changes Caused by Land-Use Changes. Journal of Climate, 2003, 16, 1511-1524.	1.2	111

#	Article	IF	CITATIONS
199	Modeling the Annual Cycle of Sea Salt in the Global 3D Model Oslo CTM2: Concentrations, Fluxes, and Radiative Impact. Journal of Climate, 2002, 15, 1717-1730.	1.2	93
200	Role of spatial and temporal variations in the computation of radiative forcing due to sulphate aerosols: A regional study. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 973-989.	1.0	29
201	Global sensitivity experiments of the radiative forcing due to mineral aerosols. Journal of Geophysical Research, 2001, 106, 18193-18204.	3.3	110
202	On the tradeoff of the solar and thermal infrared radiative impact of contrails. Geophysical Research Letters, 2001, 28, 3119-3122.	1.5	90
203	Historical evolution of radiative forcing of climate. Atmospheric Environment, 2001, 35, 2361-2373.	1.9	80
204	Atmospheric degradation and global warming potentials of three perfluoroalkenes. Atmospheric Environment, 2001, 35, 4113-4123.	1.9	94
205	Radiative forcing due to changes in tropospheric ozone in the period 1980 to 1996. Journal of Geophysical Research, 2000, 105, 28935-28942.	3.3	24
206	Trend analysis of O3and CO in the period 1980-1996: A three-dimensional model study. Journal of Geophysical Research, 2000, 105, 28907-28933.	3.3	29
207	Time evolution of tropospheric ozone and its radiative forcing. Journal of Geophysical Research, 2000, 105, 8915-8930.	3.3	41
208	Infrared absorption cross section, radiative forcing, and GWP of four hydrofluoro(poly)ethers. Atmospheric Environment, 1999, 33, 4447-4458.	1.9	25
209	Estimation of the direct radiative forcing due to sulfate and soot aerosols. Tellus, Series B: Chemical and Physical Meteorology, 1998, 50, 463-477.	0.8	66
210	New estimates of radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 1998, 25, 2715-2718.	1.5	653
211	Role of spatial and temporal variations in the computation of radiative forcing and GWP. Journal of Geophysical Research, 1997, 102, 11181-11200.	3.3	68
212	Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. Journal of Geophysical Research, 1997, 102, 28101-28126.	3.3	104