
Catherine D Van Raamsdonk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4459024/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature, 2009, 457, 599-602.	27.8	1,433
2	Mutations in <i>GNA11</i> in Uveal Melanoma. New England Journal of Medicine, 2010, 363, 2191-2199.	27.0	1,312
3	Effects of G-protein mutations on skin color. Nature Genetics, 2004, 36, 961-968.	21.4	186
4	Genetics of dark skin in mice. Genes and Development, 2003, 17, 214-228.	5.9	124
5	Dorsoventral Patterning of the Mouse Coat by Tbx15. PLoS Biology, 2004, 2, e3.	5.6	96
6	Oncogenic G Protein GNAQ Induces Uveal Melanoma and Intravasation in Mice. Cancer Research, 2015, 75, 3384-3397.	0.9	73
7	Disruption of an imprinted gene cluster by a targeted chromosomal translocation in mice. Nature Genetics, 2001, 29, 78-82.	21.4	47
8	Links between <scp>S</scp> chwann cells and melanocytes in development and disease. Pigment Cell and Melanoma Research, 2013, 26, 634-645.	3.3	43
9	Independent regulation of hair and skin color by two G protein oupled pathways. Pigment Cell and Melanoma Research, 2009, 22, 819-826.	3.3	37
10	Gnaq and Gna11 in the Endothelin Signaling Pathway and Melanoma. Frontiers in Genetics, 2016, 7, 59.	2.3	33
11	Differential Effects of Neurofibromin Gene Dosage on Melanocyte Development. Journal of Investigative Dermatology, 2013, 133, 49-58.	0.7	31
12	Optimizing the detection of nascent transcripts by RNA fluorescence in situ hybridization. Nucleic Acids Research, 2001, 29, 42e-42.	14.5	17
13	Update from the 2013 international neurofibromatosis conference. American Journal of Medical Genetics, Part A, 2014, 164, 2969-2978.	1.2	17
14	Melanocyte development in the mouse tail epidermis requires the Adamts9 metalloproteinase. Pigment Cell and Melanoma Research, 2018, 31, 693-707.	3.3	17
15	GNAQ ^{Q209L} expression initiated in multipotent neural crest cells drives aggressive melanoma of the central nervous system. Pigment Cell and Melanoma Research, 2020, 33, 96-111.	3.3	16
16	<i>Adam10</i> haploinsufficiency causes freckleâ€ŀike macules in <i>Hairless</i> mice. Pigment Cell and Melanoma Research, 2012, 25, 555-565.	3.3	14
17	Endothelin signaling promotes melanoma tumorigenesis driven by constitutively active GNAQ. Pigment Cell and Melanoma Research, 2020, 33, 834-849.	3.3	11
18	Precise coordination of cell-ECM adhesion is essential for efficient melanoblast migration during development. Development (Cambridge), 2020, 147, .	2.5	11

#	Article	IF	CITATIONS
19	Rapid melanoma induction in mice expressing oncogenic <i>Braf</i> ^{<i>V600</i>E} using <i>Mitfâ€cre</i> . Pigment Cell and Melanoma Research, 2018, 31, 541-544.	3.3	10
20	Genetic Interactions between Neurofibromin and Endothelin Receptor B in Mice. PLoS ONE, 2013, 8, e59931.	2.5	9
21	Neurofibromin haploinsufficiency results in altered spermatogenesis in a mouse model of neurofibromatosis type 1. PLoS ONE, 2018, 13, e0208835.	2.5	6
22	Hereditary hair loss and the ancient signaling pathways that regulate ectodermal appendage formation. Clinical Genetics, 2009, 76, 332-340.	2.0	5
23	Crosstalk with keratinocytes causes GNAQ oncogene specificity in melanoma. ELife, 2021, 10, .	6.0	5
24	Mutation of GNAQ in a Cytologically Unusual Choroidal Melanoma in an 18-Month-Old Child. JAMA Ophthalmology, 2013, 131, 810.	2.5	3