Yuanzheng Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4458867/publications.pdf Version: 2024-02-01

YUANZHENC LL

#	Article	IF	CITATIONS
1	Strong Exciton–Photon Coupling and Lasing Behavior in All-Inorganic CsPbBr ₃ Micro/Nanowire Fabry-Pérot Cavity. ACS Photonics, 2018, 5, 2051-2059.	3.2	145
2	Strong Exciton–Photon Coupling in Hybrid Inorganic–Organic Perovskite Micro/Nanowires. Advanced Optical Materials, 2018, 6, 1701032.	3.6	114
3	Highly stable and luminescent silica-coated perovskite quantum dots at nanoscale-particle level via nonpolar solvent synthesis. Chemical Engineering Journal, 2021, 407, 128001.	6.6	66
4	Deep Learning Based Densely Connected Network for Load Forecasting. IEEE Transactions on Power Systems, 2021, 36, 2829-2840.	4.6	57
5	Accurate identification of layer number for few-layer WS ₂ and WSe ₂ via spectroscopic study. Nanotechnology, 2018, 29, 124001.	1.3	52
6	Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. Journal of Materials Chemistry C, 2019, 7, 4304-4319.	2.7	51
7	Twisted-Angle-Dependent Optical Behaviors of Intralayer Excitons and Trions in WS ₂ /WSe ₂ Heterostructure. ACS Photonics, 2019, 6, 3082-3091.	3.2	41
8	Synchronously improved stretchability and mobility by tuning the molecular weight for intrinsically stretchable transistors. Journal of Materials Chemistry C, 2020, 8, 15646-15654.	2.7	26
9	Controlled Gas Molecules Doping of Monolayer MoS ₂ via Atomic-Layer-Deposited Al ₂ O ₃ Films. ACS Applied Materials & Interfaces, 2017, 9, 27402-27408.	4.0	23
10	Slow Cooling of Highâ€Energy C Excitons Is Limited by Intervalleyâ€Transfer in Monolayer MoS 2. Laser and Photonics Reviews, 2019, 13, 1800270.	4.4	22
11	The Auger process in multilayer WSe ₂ crystals. Nanoscale, 2018, 10, 17585-17592.	2.8	20
12	Enhancement of Exciton Emission from Multilayer MoS ₂ at High Temperatures: Intervalley Transfer versus Interlayer Decoupling. Small, 2017, 13, 1700157.	5.2	19
13	Abnormal high-temperature luminescence enhancement observed in monolayer MoS ₂ flakes: thermo-driven transition from negatively charged trions to neutral excitons. Journal of Materials Chemistry C, 2016, 4, 9187-9196.	2.7	15
14	Engineering fluorescence intensity and electron concentration of monolayer MoS ₂ by forming heterostructures with semiconductor dots. Nanoscale, 2019, 11, 6544-6551.	2.8	14
15	High-temperature driven inter-valley carrier transfer and significant fluorescence enhancement in multilayer WS ₂ . Nanoscale Horizons, 2018, 3, 598-605.	4.1	13
16	Unveiling Bandgap Evolution and Carrier Redistribution in Multilayer WSe 2 : Enhanced Photon Emission via Heat Engineering. Advanced Optical Materials, 2020, 8, 1901226.	3.6	12
17	Manipulating Transfer and Separation of Photocarriers in Monolayer WS ₂ via CdSe Quantum Dot Doping. ACS Photonics, 2020, 7, 1857-1865.	3.2	11
18	Highly Photoluminescent Monolayer MoS ₂ and WS ₂ Achieved via Superacid Assisted Vacancy Reparation and Doping Strategy. Laser and Photonics Reviews, 2021, 15, 2100104.	4.4	11

YUANZHENG LI

#	Article	IF	CITATIONS
19	Revealing the interrelation between C- and A-exciton dynamics in monolayer WS2 via transient absorption spectroscopy. Applied Physics Letters, 2021, 119, .	1.5	10
20	Suspended few-layer GaS photodetector with sensitive fast response. Materials and Design, 2021, 212, 110233.	3.3	9
21	Enhanced Carrier–Exciton Interactions in Monolayer MoS2 under Applied Voltages. ACS Applied Materials & Interfaces, 2020, 12, 18870-18876.	4.0	7
22	Unraveling the synergetic mechanism of physisorption and chemisorption in laser-irradiated monolayer WS2. Nano Research, 2021, 14, 4274-4280.	5.8	6
23	Engineering Relaxation-Paths of C-Exciton for Constructing Band Nesting Bypass in WS ₂ Monolayer. Nano Letters, 2022, 22, 3699-3706.	4.5	6
24	Enhanced Photostability and Photoluminescence of PbI 2 via Constructing Typeâ€i Heterostructure with ZnO. Advanced Photonics Research, 2021, 2, 2000183.	1.7	2
25	Directed exfoliating and ordered stacking of transition-metal-dichalcogenides. Nanoscale, 2022, 14, 7484-7492.	2.8	2
26	Enhanced Photostability and Photoluminescence of PbI ₂ via Constructing Typeâ€ Heterostructure with ZnO. Advanced Photonics Research, 2021, 2, 2170017.	1.7	0