Yong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4458691/publications.pdf Version: 2024-02-01

Υσής Ζηλης

#	Article	IF	CITATIONS
1	Facile fabrication of polyaniline/multi-walled carbon nanotubes/molybdenum disulfide ternary nanocomposite and its high-performance ammonia-sensing at room temperature. Sensors and Actuators B: Chemical, 2018, 258, 895-905.	4.0	141
2	Preparation of Ag nanoparticles-SnO2 nanoparticles-reduced graphene oxide hybrids and their application for detection of NO2 at room temperature. Sensors and Actuators B: Chemical, 2016, 222, 893-903.	4.0	122
3	High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sensors and Actuators B: Chemical, 2015, 211, 318-324.	4.0	111
4	High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sensors and Actuators B: Chemical, 2017, 242, 269-279.	4.0	99
5	Sulfonated graphene anchored with tin oxide nanoparticles for detection of nitrogen dioxide at room temperature with enhanced sensing performances. Sensors and Actuators B: Chemical, 2016, 228, 134-143.	4.0	73
6	Preparation of zinc oxide nanoparticle–reduced graphene oxide–gold nanoparticle hybrids for detection of NO ₂ . RSC Advances, 2015, 5, 91760-91765.	1.7	49
7	Confinement preparation of Au nanoparticles embedded in ZIF-67-derived N-doped porous carbon for high-performance detection of hydrazine in liquid/gas phase. Sensors and Actuators B: Chemical, 2019, 285, 607-616.	4.0	49
8	Confinement preparation of hierarchical NiO-N-doped carbon@reduced graphene oxide microspheres for high-performance non-enzymatic detection of glucose. Sensors and Actuators B: Chemical, 2020, 309, 127779.	4.0	48
9	Synthesis of Ag nanoparticle–carbon nanotube–reduced graphene oxide hybrids for highly sensitive non-enzymatic hydrogen peroxide detection. RSC Advances, 2015, 5, 39037-39041.	1.7	41
10	Ethanol gas sensing properties of lead sulfide quantum dots-decorated zinc oxide nanorods prepared by hydrothermal process combining with successive ionic-layer adsorption and reaction method. Journal of Colloid and Interface Science, 2018, 528, 184-191.	5.0	40
11	Fabrication and characterization of layer-by-layer nano self-assembled ZnO nanorods/carbon nanotube film sensor for ethanol gas sensing application at room temperature. Journal of Materials Science: Materials in Electronics, 2015, 26, 7445-7451.	1.1	38
12	Electrodeposition synthesis of reduced graphene oxide–carbon nanotube hybrids on indium tin oxide electrode for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. RSC Advances, 2015, 5, 106307-106314.	1.7	37
13	In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine. Sensors and Actuators B: Chemical, 2017, 243, 1231-1239.	4.0	34
14	Functionalization of the support material based on N-doped carbon-reduced graphene oxide and its influence on the non-enzymatic detection of glucose. Journal of Alloys and Compounds, 2019, 780, 98-106.	2.8	31
15	Hydrophobic modification of ZnO nanostructures surface using silane coupling agent. Polymer Composites, 2014, 35, 1204-1211.	2.3	25
16	An organometallic chemistry-assisted strategy for modification of zinc oxide nanoparticles by tin oxide nanoparticles: Formation of n-n heterojunction and boosting NO2 sensing properties. Journal of Colloid and Interface Science, 2020, 567, 328-338.	5.0	23
17	In situ growth of Ag-reduced graphene oxide-carbon nanotube on indium tin oxide and its application for electrochemical sensing. Materials Research Bulletin, 2016, 84, 355-362.	2.7	19
18	Solvent-free infiltration method to prepare mesoporous SnO2 templated by SiO2 nanoparticles for ethanol sensing. Sensors and Actuators B: Chemical, 2015, 210, 700-705.	4.0	17

YONG ZHANG

#	Article	IF	Citations
19	In situ formation of reduced graphene oxide@Co3O4-N-doped carbon and its structure-function relationship for glucose sensing. Applied Surface Science, 2021, 539, 148235.	3.1	17
20	High-performance NO2 gas sensor based on bimetallic oxide CuWO4 decorated with reduced graphene oxide. Journal of Materials Science: Materials in Electronics, 2020, 31, 6706-6715.	1.1	15
21	Infrared light-assisted preparation of Ag nanoparticles-reduced graphene oxide nanocomposites for non-enzymatic H 2 O 2 sensing. Materials Research Bulletin, 2015, 72, 184-187.	2.7	13
22	ZIF-8-derived N-doped porous carbon coated reduced graphene oxide as ultrasensitive platform and its application for electrochemical sensing. Journal of Alloys and Compounds, 2021, 857, 157604.	2.8	10
23	Confined nanospace pyrolysis for synthesis of N-doped few-layer graphene-supported yolk–shell carbon hollow spheres for electrochemical sensing. RSC Advances, 2015, 5, 37568-37573.	1.7	6
24	Green preparation of Au nanoparticles for electrochemical detection of H ₂ O ₂ . Journal of Semiconductors, 2016, 37, 013003.	2.0	6
25	Rational design of Ag nanocubes-reduced graphene oxide nanocomposites for high-performance non-enzymatic H2O2 sensing. Chemical Research in Chinese Universities, 2017, 33, 946-950.	1.3	2