Sadie J. Ryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4458679/publications.pdf

Version: 2024-02-01

147 papers

7,307 citations

38 h-index 74 g-index

205 all docs

205
docs citations

205 times ranked 8942 citing authors

#	Article	IF	CITATIONS
1	The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Research, 2011, 46, 15-27.	0.4	546
2	Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Neglected Tropical Diseases, 2019, 13, e0007213.	1.3	484
3	Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecology Letters, 2013, 16, 22-30.	3.0	466
4	Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Neglected Tropical Diseases, 2017, 11, e0005568.	1.3	430
5	LoCoH: Nonparameteric Kernel Methods for Constructing Home Ranges and Utilization Distributions. PLoS ONE, 2007, 2, e207.	1.1	410
6	Thermal biology of mosquitoâ€borne disease. Ecology Letters, 2019, 22, 1690-1708.	3.0	349
7	Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control. PLoS ONE, 2013, 8, e78263.	1.1	168
8	Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planetary Health, The, 2020, 4, e416-e423.	5.1	163
9	Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180795.	1.2	151
10	Mapping Physiological Suitability Limits for Malaria in Africa Under Climate Change. Vector-Borne and Zoonotic Diseases, 2015, 15, 718-725.	0.6	136
11	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	3.3	136
12	Nonlinear and delayed impacts of climate on dengue risk in Barbados: A modelling study. PLoS Medicine, 2018, 15, e1002613.	3.9	135
13	Misconceptions about weather and seasonality must not misguide COVID-19 response. Nature Communications, 2020, 11, 4312.	5.8	124
14	Efforts going to the dogs? Evaluating attempts to reâ€introduce endangered wild dogs in South Africa. Journal of Applied Ecology, 2008, 45, 100-108.	1.9	110
15	Range and Habitat Selection of African Buffalo in South Africa. Journal of Wildlife Management, 2006, 70, 764-776.	0.7	102
16	Making ecological models adequate. Ecology Letters, 2018, 21, 153-166.	3.0	100
17	Understanding uncertainty in temperature effects on vectorâ€borne disease: a Bayesian approach. Ecology, 2015, 96, 203-213.	1.5	98
18	Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infectious Diseases, 2014, 14, 610.	1.3	88

#	Article	IF	CITATIONS
19	A global map of suitability for coastal Vibrio cholerae under current and future climate conditions. Acta Tropica, 2015, 149, 202-211.	0.9	87
20	Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. Malaria Journal, 2020, 19, 170.	0.8	83
21	Patterns and Perceptions of Climate Change in a Biodiversity Conservation Hotspot. PLoS ONE, 2012, 7, e32408.	1.1	83
22	Consequences of Non-Intervention for Infectious Disease in African Great Apes. PLoS ONE, 2011, 6, e29030.	1.1	79
23	Methods for assessing movement path recursion with application to African buffalo in South Africa. Ecology, 2009, 90, 2467-2479.	1.5	77
24	The utility of normalized difference vegetation index for predicting African buffalo forage quality. Journal of Wildlife Management, 2012, 76, 1499-1508.	0.7	71
25	Ecological cues, gestation length, and birth timing in African buffalo (Syncerus caffer). Behavioral Ecology, 2007, 18, 635-644.	1.0	70
26	Temperature explains broad patterns of Ross River virus transmission. ELife, 2018, 7, .	2.8	67
27	Validation of Satellite Rainfall Products for Western Uganda. Journal of Hydrometeorology, 2014, 15, 2030-2038.	0.7	64
28	A social-ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health, 2014, 14, 1135.	1.2	62
29	Top-down or bottom-up?. Land Use Policy, 2010, 27, 815-826.	2.5	59
30	Satellite-based rainfall data reveal a recent drying trend in central equatorial Africa. Climatic Change, 2014, 126, 263-272.	1.7	59
31	The science of the host–virus network. Nature Microbiology, 2021, 6, 1483-1492.	5.9	59
32	Warming temperatures could expose more than 1.3Âbillion new people to Zika virus risk by 2050. Global Change Biology, 2021, 27, 84-93.	4.2	57
33	A Survey of Gastrointestinal Parasites of Olive Baboons (Papio anubis) in Human Settlement Areas of Mole National Park, Ghana. Journal of Parasitology, 2012, 98, 885-888.	0.3	54
34	Now there is no land: a story of ethnic migration in a protected area landscape in western Uganda. Population and Environment, 2015, 36, 452-479.	1.3	50
35	Addressing vulnerability, building resilience: community-based adaptation to vector-borne diseases in the context of global change. Infectious Diseases of Poverty, 2017, 6, 166.	1.5	50
36	Consensus and conflict among ecological forecasts of Zika virus outbreaks in the United States. Scientific Reports, 2018, 8, 4921.	1.6	50

#	Article	lF	CITATIONS
37	Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nature Communications, 2021, 12, 1233.	5.8	49
38	Social-ecological factors and preventive actions decrease the risk of dengue infection at the household-level: Results from a prospective dengue surveillance study in Machala, Ecuador. PLoS Neglected Tropical Diseases, 2017, 11, e0006150.	1.3	49
39	Effects of Political Instability in Venezuela on Malaria Resurgence at Ecuador–Peru Border, 2018. Emerging Infectious Diseases, 2019, 25, 834-836.	2.0	47
40	The future of zoonotic risk prediction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200358.	1.8	47
41	The Social and Spatial Ecology of Dengue Presence and Burden during an Outbreak in Guayaquil, Ecuador, 2012. International Journal of Environmental Research and Public Health, 2018, 15, 827.	1.2	46
42	Spatially Explicit Data: Stewardship and Ethical Challenges in Science. PLoS Biology, 2013, 11, e1001634.	2.6	43
43	The Burden of Dengue Fever and Chikungunya in Southern Coastal Ecuador: Epidemiology, Clinical Presentation, and Phylogenetics from the First Two Years of a Prospective Study. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1444-1459.	0.6	41
44	A saliva-based rapid test to quantify the infectious subclinical malaria parasite reservoir. Science Translational Medicine, $2019,11,.$	5.8	40
45	Conservation in the maelstrom of Covidâ€19 – a call to action to solve the challenges, exploit opportunities and prepare for the next pandemic. Animal Conservation, 2020, 23, 235-238.	1.5	39
46	Geographic shifts in Aedes aegypti habitat suitability in Ecuador using larval surveillance data and ecological niche modeling: Implications of climate change for public health vector control. PLoS Neglected Tropical Diseases, 2019, 13, e0007322.	1.3	38
47	Effects of hand-rearing on the reproductive success of western lowland gorillas in North America. Zoo Biology, 2002, 21, 389-401.	0.5	36
48	Diversity: The Role of Culture in Conservation Planning for Small or Endangered Populations. Conservation Biology, 2006, 20, 1321-1324.	2.4	36
49	Temperature impacts the environmental suitability for malaria transmission by <i>Anopheles gambiae</i> and <i>Anopheles stephensi</i> Ecology, 2022, 103, e3685.	1.5	34
50	Assessing the risk of humanâ€toâ€wildlife pathogen transmission for conservation and public health. Ecology Letters, 2022, 25, 1534-1549.	3.0	33
51	Landscapes as continuous entities: forest disturbance and recovery in the Albertine Rift landscape. Landscape Ecology, 2011, 26, 877-890.	1.9	30
52	Contrasting perceptions of ecosystem services of an African forest park. Environmental Conservation, 2014, 41, 330-340.	0.7	29
53	Phenomenological forecasting of disease incidence using heteroskedastic Gaussian processes: A dengue case study. Annals of Applied Statistics, 2018, 12, .	0.5	29
54	Intersexual Conflict and Group Size in Alouatta palliata: A 23-year Evaluation. International Journal of Primatology, 2008, 29, 405-420.	0.9	28

#	Article	IF	Citations
55	Knowledge, attitudes, and practices regarding dengue infection among public sector healthcare providers in Machala, Ecuador. Tropical Diseases, Travel Medicine and Vaccines, 2016, 2, 8.	0.9	28
56	Socio-Ecological Factors Associated with Dengue Risk and Aedes aegypti Presence in the Galápagos Islands, Ecuador. International Journal of Environmental Research and Public Health, 2019, 16, 682.	1.2	26
57	Activity patterns of African buffalo <i>Syncerus caffer</i> in the Lower Sabie Region, Kruger National Park, South Africa. Koedoe, 2005, 48, 117.	0.3	24
58	Defining herbivore assemblages in the Kruger National Park: a correlative coherence approach. Oecologia, 2006, 146, 632-640.	0.9	24
59	deBInfer: Bayesian inference for dynamical models of biological systems in <scp>R</scp> . Methods in Ecology and Evolution, 2017, 8, 511-518.	2.2	24
60	Park isolation in anthropogenic landscapes: land change and livelihoods at park boundaries in the African Albertine Rift. Regional Environmental Change, 2018, 18, 913-928.	1.4	24
61	Predicting the fundamental thermal niche of crop pests and diseases in a changing world: A case study on citrus greening. Journal of Applied Ecology, 2019, 56, 2057-2068.	1.9	24
62	Hunting, food subsidies, and mesopredator release: the dynamics of cropâ€raiding baboons in a managed landscape. Ecology, 2016, 97, 951-960.	1.5	23
63	Perceptions of risk in communities near parks in an African biodiversity hotspot. Ambio, 2016, 45, 692-705.	2.8	23
64	Changes in vegetation persistence across global savanna landscapes, 1982–2010. Journal of Land Use Science, 2016, 11, 7-32.	1.0	23
65	Population pressure and global markets drive a decade of forest cover change in Africa's Albertine Rift. Applied Geography, 2017, 81, 52-59.	1.7	23
66	HIV knowledge mediates the relationship between HIV testing history and stigma in college students. Journal of American College Health, 2018, 66, 561-569.	0.8	23
67	Trends and Opportunities in Tick-Borne Disease Geography. Journal of Medical Entomology, 2021, 58, 2021-2029.	0.9	23
68	The Global Virome in One Network (VIRION): an Atlas of Vertebrate-Virus Associations. MBio, 2022, 13, e0298521.	1.8	23
69	Urban-adapted mammal species have more known pathogens. Nature Ecology and Evolution, 2022, 6, 794-801.	3.4	23
70	Disease Prevention versus Data Privacy: Using Landcover Maps to Inform Spatial Epidemic Models. PLoS Computational Biology, 2012, 8, e1002723.	1.5	22
71	Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador. PLoS Neglected Tropical Diseases, 2019, 13, e0007448.	1.3	21
72	Age influences the thermal suitability of <i>Plasmodium falciparum</i> transmission in the Asian malaria vector <i>Anopheles stephensi</i> Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201093.	1.2	21

#	Article	IF	CITATIONS
73	Changing livestock vaccination policy alters the epidemiology of human anthrax, Georgia, 2000–2013. Vaccine, 2017, 35, 6283-6289.	1.7	20
74	Remote Sensing in Ecology and Conservation: three years on. Remote Sensing in Ecology and Conservation, 2017, 3, 53-56.	2.2	20
75	Co-developing climate services for public health: Stakeholder needs and perceptions for the prevention and control of Aedes-transmitted diseases in the Caribbean. PLoS Neglected Tropical Diseases, 2019, 13, e0007772.	1.3	20
76	MIReAD, a minimum information standard for reporting arthropod abundance data. Scientific Data, 2019, 6, 40.	2.4	20
77	Modeling R0 for Pathogens with Environmental Transmission: Animal Movements, Pathogen Populations, and Local Infectious Zones. International Journal of Environmental Research and Public Health, 2019, 16, 954.	1.2	20
78	Mammal virus diversity estimates are unstable due to accelerating discovery effort. Biology Letters, 2022, 18, 20210427.	1.0	20
79	Disease risk and inter-institutional transfer of specimens in cooperative breeding programs: Herpes and the elephant species survival plans. Zoo Biology, 2001, 20, 89-101.	0.5	19
80	Malaria control and senescence: the importance of accounting for the pace and shape of aging in wild mosquitoes. Ecosphere, 2015, 6, 1-13.	1.0	19
81	Household level influences on fragmentation in an African park landscape. Applied Geography, 2015, 58, 18-31.	1.7	19
82	Quantifying seasonal and diel variation in Anopheline and Culex human biting rates in Southern Ecuador. Malaria Journal, 2017, 16, 479.	0.8	19
83	Solar geoengineering could redistribute malaria risk in developing countries. Nature Communications, 2022, 13, 2150.	5.8	17
84	Outbreak of Zika Virus Infections, Dominica, 2016. Emerging Infectious Diseases, 2017, 23, 1926-1927.	2.0	16
85	Assessing the nonhuman primate reservoir of Schistosoma mansoni in Africa: a systematic review. Infectious Diseases of Poverty, 2019, 8, 32.	1.5	16
86	Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection. PLoS Neglected Tropical Diseases, 2020, 14, e0007969.	1.3	16
87	Competition alters seasonal resource selection and promotes use of invasive shrubs by an imperiled native cottontail. Ecology and Evolution, 2018, 8, 11122-11133.	0.8	15
88	The origins of dengue and chikungunya viruses in Ecuador following increased migration from Venezuela and Colombia. BMC Evolutionary Biology, 2020, 20, 31.	3.2	15
89	Data Proliferation, Reconciliation, and Synthesis in Viral Ecology. BioScience, 2021, 71, 1148-1156.	2.2	15
90	Understanding Long-Term Savanna Vegetation Persistence across Three Drainage Basins in Southern Africa. Remote Sensing, 2018, 10, 1013.	1.8	14

#	Article	IF	CITATIONS
91	Spatiotemporal Tools for Emerging and Endemic Disease Hotspots in Small Areas: An Analysis of Dengue and Chikungunya in Barbados, 2013–2016. American Journal of Tropical Medicine and Hygiene, 2020, 103, 149-156.	0.6	14
92	Spatial variation in the frequency of knockdown resistance genotypes in Florida Aedes aegypti populations. Parasites and Vectors, 2020, 13, 241.	1.0	13
93	Beyond Ecological Success of Corridors: Integrating Land Use History and Demographic Change to Provide a Whole Landscape Perspective. Ecological Restoration, 2012, 30, 320-328.	0.6	12
94	African buffalo Syncerus caffer (Sparrman, 1779)., 2014,, 326-372.		12
95	Decoupling environmental effects and host population dynamics for anthrax, a classic reservoir-driven disease. PLoS ONE, 2018, 13, e0208621.	1.1	12
96	Hierarchical population structure of a rare lagomorph indicates recent fragmentation has disrupted metapopulation function. Conservation Genetics, 2019, 20, 1237-1249.	0.8	12
97	Exploring the Niche of <i>Rickettsia montanensis</i> (Rickettsiales: Rickettsiaceae) Infection of the American Dog Tick (Acari: Ixodidae), Using Multiple Species Distribution Model Approaches. Journal of Medical Entomology, 2021, 58, 1083-1092.	0.9	12
98	Building resilience to mosquito-borne diseases in the Caribbean. PLoS Biology, 2020, 18, e3000791.	2.6	12
99	Interactions between Social Structure, Demography, and Transmission Determine Disease Persistence in Primates. PLoS ONE, 2013, 8, e76863.	1.1	11
100	Determinants of home-range size of imperiled New England cottontails (Sylvilagus transitionalis) and introduced eastern cottontails (Sylvilagus floridanus). Canadian Journal of Zoology, 2019, 97, 516-523.	0.4	11
101	Effects of changes in temperature on Zika dynamics and control. Journal of the Royal Society Interface, 2021, 18, 20210165.	1.5	11
102	Incongruent HIV and tuberculosis co-dynamics in Kenya: Interacting epidemics monitor each other. Epidemics, 2009, 1, 14-20.	1.5	10
103	Robust detection of plant species distribution shifts under biased sampling regimes. Ecosphere, 2011, 2, art115.	1.0	10
104	Sexâ€Specific Elk Resource Selection during the Anthrax Risk Period. Journal of Wildlife Management, 2021, 85, 145-155.	0.7	10
105	Scoping review of distribution models for selected <i>Amblyomma</i> ticks and rickettsial group pathogens. PeerJ, 2021, 9, e10596.	0.9	10
106	Is conservation based on best available science creating an ecological trap for an imperiled lagomorph?. Ecology and Evolution, 2021, 11, 912-930.	0.8	10
107	Using stage-based system dynamics modeling for demographic management of captive populations. Zoo Biology, 2003, 22, 45-64.	0.5	9
108	A generic arboviral model framework for exploring trade-offs between vector control and environmental concerns. Journal of Theoretical Biology, 2020, 490, 110161.	0.8	9

#	Article	IF	CITATIONS
109	Implications of Insecticide-Treated Mosquito Net Fishing in Lower Income Countries. Environmental Health Perspectives, 2021, 129, 15001.	2.8	9
110	Intersecting vulnerabilities: climatic and demographic contributions to future population exposure to Aedes-borne viruses in the United States. Environmental Research Letters, 2020, 15, 084046.	2.2	9
111	Zika Virus Outbreak, Barbados, 2015–2016. American Journal of Tropical Medicine and Hygiene, 2018, 98, 1857-1859.	0.6	9
112	Assessing impacts to primary productivity at the park edge in M urchison F alls C onservation A rea, U ganda. Ecosphere, 2016, 7, e01486.	1.0	8
113	Polisye Kont Moustik: A Culturally Competent Approach to Larval Source Reduction in the Context of Lymphatic Filariasis and Malaria Elimination in Haiti. Tropical Medicine and Infectious Disease, 2017, 2, 39.	0.9	8
114	The impact of industrial oil development on a protected area landscape: demographic and social change at Murchison Falls Conservation Area, Uganda. Population and Environment, 2018, 39, 197-218.	1.3	8
115	Assessing the impacts of oil exploration and restoration on mammals in Murchison Falls Conservation Area, Uganda. African Journal of Ecology, 2018, 56, 804-817.	0.4	8
116	Environmental Drivers of Ranavirus in Free-Living Amphibians in Constructed Ponds. EcoHealth, 2018, 15, 608-618.	0.9	8
117	Examining the relationship between migration and forest cover change in Mexico from 2001 to 2010. Land Use Policy, 2020, 91, 104334.	2.5	8
118	Welfare at Multiple Scales: Importance of Zoo Elephant Population Welfare in a World of Declining Wild Populations. PLoS ONE, 2016, 11, e0158701.	1.1	7
119	Mapping Thermal Physiology of Vector-Borne Diseases in a Changing Climate: Shifts in Geographic and Demographic Risk of Suitability. Current Environmental Health Reports, 2020, 7, 415-423.	3.2	7
120	Exploring the utility of social-ecological and entomological risk factors for dengue infection as surveillance indicators in the dengue hyper-endemic city of Machala, Ecuador. PLoS Neglected Tropical Diseases, 2021, 15, e0009257.	1.3	7
121	Household and climate factors influence Aedes aegypti presence in the arid city of Huaquillas, Ecuador. PLoS Neglected Tropical Diseases, 2021, 15, e0009931.	1.3	7
122	Habitat use, activity patterns and human interactions with jaguars <i>Panthera onca</i> in southern Belize. Oryx, 2018, 52, 276-281.	0.5	6
123	Predicting temperature-dependent transmission suitability of bluetongue virus in livestock. Parasites and Vectors, 2021, 14, 382.	1.0	6
124	Ungulate use of locally infectious zones in a re-emerging anthrax risk area. Royal Society Open Science, 2020, 7, 200246.	1.1	5
125	A network analysis framework to improve the delivery of mosquito abatement services in Machala, Ecuador. International Journal of Health Geographics, 2020, 19, 3.	1.2	5
126	Climate Change Impacts on Human Health. , 2017, , .		5

#	Article	IF	CITATIONS
127	REFERENCE AND BASELINE HEMATOCRIT MEASURES FOR THE THREATENED NEW ENGLAND COTTONTAIL (SYLVILAGUS TRANSITIONALIS) AND COMPARISON WITH SYMPATRIC EASTERN COTTONTAIL (SYLVILAGUS) TJ	ETQ q 1310	.78 4 314 rgBT
128	Changing measurements or changing movements? Sampling scale and movement model identifiability across generations of biologging technology. Ecology and Evolution, 2017, 7, 9257-9266.	0.8	4
129	Using a coupled dynamic factor – random forest analysis (DFRFA) to reveal drivers of spatiotemporal heterogeneity in the semi-arid regions of southern Africa. PLoS ONE, 2018, 13, e0208400.	1.1	4
130	Measuring dimensions of HIV-related stigma among college students Stigma and Health, 2021, 6, 296-303.	1.2	4
131	Implications of Spatial Data Variations for Protected Areas Management: An Example from East Africa. Environmental Management, 2014, 54, 596-605.	1.2	3
132	Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador. International Journal of Environmental Research and Public Health, 2018, 15, 486.	1.2	3
133	Potential Bacillus anthracis Risk Zones for Male Plains Bison (Bison bison bison) in Southwestern Montana, USA. Journal of Wildlife Diseases, 2019, 55, 136.	0.3	3
134	Gastrointestinal parasites of the New England cottontail rabbit (Sylvilagus transitionalis) and eastern cottontail rabbit (Sylvilagus floridanus) in the Hudson Valley, New York. Parasitology Research, 2019, 118, 2257-2262.	0.6	3
135	Anthrax Surveillance and the Limited Overlap Between Obligate Scavengers and Endemic Anthrax Zones in the United States. Vector-Borne and Zoonotic Diseases, 2021, 21, 675-684.	0.6	3
136	MPowering ecologists: community assembly tools for community assembly rules. Oikos, 2010, 119, 1064-1069.	1.2	2
137	Sexual Risk Factors and Human Immunodeficiency Virus Testing Intention Among At-Risk College Students Who Have Never Been Tested. Sexually Transmitted Diseases, 2019, 46, e76-e79.	0.8	2
138	Key Findings and Comparisons From Analogous Case-Cluster Studies for Dengue Virus Infection Conducted in Machala, Ecuador, and Kamphaeng Phet, Thailand. Frontiers in Public Health, 2020, 8, 2.	1.3	2
139	Surface temperatures of albatross eggs and nests. Emu, 2018, 118, 224-229.	0.2	1
140	Protected Areas, Climate Change, and Ecosystem Sustainability., 2018,, 202-219.		1
141	Comparing prioritization strategies for delivering indoor residual spray (IRS) implementation, using a network approach. Malaria Journal, 2020, 19, 326.	0.8	1
142	HIV-Related Stigma Moderates the Relation Between Perceived Susceptibility and HIV Testing Intention Among Heterosexual (but Not Sexual Minority) College Students. Health Promotion Practice, 2022, 23, 950-954.	0.9	1
143	Co-learning during the co-creation of a dengue early warning system for the health sector in Barbados. BMJ Global Health, 2022, 7, e007842.	2.0	1
144	Global Economic and Diet Transitions Drive Latin American and Caribbean Forest Change during the First Decade of the Century: A Multi-Scale Analysis of Socioeconomic, Demographic, and Environmental Drivers of Local Forest Cover Change. Land, 2022, 11, 326.	1,2	1

#	ARTICLE	IF	CITATIONS
145	Governing Africa's Forests in a Globalized World - Edited by Laura A German, Alain Karsenty, and Anne-Marie Tiani. Natural Resources Forum, 2011, 35, 146-147.	1.8	0
146	Disease Ecology. Global Perspectives on Health Geography, 2021, , 31-38.	0.2	0
147	Examining Wing Length–Abundance Relationships and Pyrethroid Resistance Mutations among Aedes albopictus in a Rapidly Growing Urban Area with Implications for Mosquito Surveillance and Control. International Journal of Environmental Research and Public Health, 2021, 18, 9443.	1.2	0