Ai Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4457329/publications.pdf

Version: 2024-02-01

89 papers	1,369	346980 22 h-index	425179 34 g-index
89 all docs	89 docs citations	89 times ranked	974 citing authors
an does	does citations	times i direct	citing authors

#	Article	IF	Citations
1	Tilted Long Period Grating Inscribed in Eccentric Dual Core Fiber for Highly Sensitive Torsion Sensing. IEEE Sensors Journal, 2022, 22, 5709-5716.	2.4	5
2	An ultra-sensitive gas pressure sensor based on tapered fiber coated with PDMS film working at TAP. Optics and Laser Technology, 2022, 151, 107998.	2.2	29
3	Highly sensitive humidity sensor based on tapered dual side-hole fiber. Optik, 2022, 261, 169183.	1.4	7
4	High-sensitivity two-axis vector bending sensor based on side-grooved long period grating in eccentric core fiber. Optics and Laser Technology, 2022, 153, 108218.	2.2	12
5	Study on the temperature characteristic of tapered twin-core fiber working at dispersion turning point. Optik, 2022, 265, 169472.	1.4	5
6	Ultrasensitive measurement of gas refractive index based on cascaded Mach–Zehnder interferometers and Vernier effect. Measurement Science and Technology, 2021, 32, 095108.	1.4	11
7	Sensitivity enhancement of a fiber plasmonic sensor based on rolled-up Ag/TiO ₂ hyperbolic metamaterials. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3403.	0.9	2
8	Cascaded fiber MZIs for simultaneous measurement of pressure and temperature. Optical Fiber Technology, 2021, 66, 102629.	1.4	16
9	Simultaneous temperature and bending sensor based on Fabry-Perot interferometer with Vernier effect. Optical Fiber Technology, 2021, 66, 102657.	1.4	9
10	Multifunctional fiber-optic sensor, based on helix structure and fiber Bragg gratings, for shape sensing. Optics and Laser Technology, 2021, 143, 107327.	2.2	16
11	Simultaneous Measurement of Gas Pressure and Temperature Based on MZI Cascaded with FBG., 2021,,.		O
12	Tilted Long-Period Fiber Grating based on Eccentric Core fiber. , 2021, , .		0
13	Robust whispering gallery mode resonator for humidity measurement. Optical Fiber Technology, 2020, 60, 102378.	1.4	2
14	A Pre-Twisted Taper in Dual-Side Hole Fiber for Torsion Measurement With High Sensitivity. IEEE Sensors Journal, 2020, 20, 7761-7765.	2.4	17
15	Importance of Internal Tensile Stress in Forming Low-Loss Fiber Draw-Tower Gratings. Journal of Lightwave Technology, 2020, 38, 1900-1904.	2.7	14
16	Multi-parameter sensing based on surface plasma resonance with tungsten disulfide sheets coated. Optics Express, 2020, 28, 6084.	1.7	16
17	Ultrasensitive NO Gas Sensor Based on the Graphene Oxide-Coated Long-Period Fiber Grating. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40868-40874.	4.0	36
18	High sensitivity directional torsion sensor based on cascaded multimode and Mach-Zehnder interferometers with spiral structure. Engineering Research Express, 2019, 1, 025041.	0.8	0

#	Article	IF	CITATIONS
19	Quasi-Distributed Directional Bending Sensor Based on Fiber Bragg Gratings Array in Triangle-Four Core Fiber. IEEE Sensors Journal, 2019, 19, 10728-10735.	2.4	13
20	Bending sensor with parallel fiber Michelson interferometers based on Vernier-like effect. Optics and Laser Technology, 2019, 120, 105679.	2.2	43
21	Thermal Stability of Drawing-Tower Grating Written in a Single Mode Fiber. Journal of Lightwave Technology, 2019, 37, 3073-3077.	2.7	14
22	Cascaded Mach–Zehnder Interferometers With Vernier Effect for Gas Pressure Sensing. IEEE Photonics Technology Letters, 2019, 31, 591-594.	1.3	28
23	Gelatin-Coated Michelson Interferometric Humidity Sensor Based on a Multicore Fiber With Helical Structure. Journal of Lightwave Technology, 2019, 37, 2452-2457.	2.7	36
24	Humidity Sensor Based on an In-Fiber Integrated Mach–Zehnder Interferometer. IEEE Photonics Technology Letters, 2019, 31, 393-396.	1.3	18
25	Polarization Beam Splitter based on Tapered MCF with PDMS Substrate. , 2019, , .		0
26	Cascaded Fabry–Pérot Interferometers with Vernier Effect for Gas Pressure Measurement. , 2019, , .		3
27	Analysis of core eccentricity on the long period grating in eccentric core fiber. , 2019, , .		0
28	Cascaded Fiber Mach–Zehnder Interferometers for Sensitivity-Enhanced Gas Pressure Measurement. IEEE Sensors Journal, 2019, 19, 2581-2586.	2.4	37
29	Highly Sensitive Vector Curvature Sensor Based on Two Juxtaposed Fiber Michelson Interferometers With Vernier-Like Effect. IEEE Sensors Journal, 2019, 19, 2148-2154.	2.4	48
30	Highly sensitive torsion senor based on dual-side-hole fiber Mach-Zehnder interferometer. Optics Express, 2019, 27, 33880.	1.7	18
31	Sensitivity-enhanced humidity sensor based on helix structure-assisted Mach-Zehnder interference. Optics Express, 2019, 27, 35609.	1.7	17
32	Highly sensitive vector curvature sensor based on a triple-core fiber interferometer. OSA Continuum, 2019, 2, 1953.	1.8	21
33	Highly Sensitive Two-Axis Bending Sensor Based on Arc-Induced Long Period Fiber Grating in Dual Side-Hole Fiber. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	21
34	An Integrated Fiber Michelson Interferometer Based on Twin-Core and Side-Hole Fibers for Multiparameter Sensing. Journal of Lightwave Technology, 2018, 36, 993-997.	2.7	51
35	Phase-Shifted Eccentric Core Fiber Bragg Grating Fabricated by Electric Arc Discharge for Directional Bending Measurement. Sensors, 2018, 18, 1168.	2.1	12
36	Fiber In-Line Mach–Zehnder Interferometer for Gas Pressure Sensing. IEEE Sensors Journal, 2018, 18, 8012-8016.	2.4	32

#	Article	IF	Citations
37	Temperature Compensated Refractometer Based on Parallel Fiber Fabry–Pérot Interferometers. IEEE Photonics Technology Letters, 2018, 30, 1262-1265.	1.3	30
38	Ultra-highly sensitive gas pressure sensor based on dual side-hole fiber interferometers with Vernier effect. Optics Express, 2018, 26, 28763.	1.7	87
39	A Compact In-fiber MZI Based on Dual Side-hole Fiber. , 2018, , .		0
40	Effect of CO2 laser irradiation direction on the spectrum of long period side-hole fiber gratings. , 2018, , .		0
41	Long Period Fiber Grating in Eccentric Core Single Mode Fiber. , 2018, , .		2
42	An In-Fiber Dual Air-Cavity Fabry–Perot Interferometer for Simultaneous Measurement of Strain and Directional Bend. IEEE Sensors Journal, 2017, 17, 3362-3366.	2.4	30
43	Simultaneous measurement of temperature and bend by using an eccentric core fiber Bragg grating cascaded with a Fabry-Perot cavity. Proceedings of SPIE, 2017, , .	0.8	2
44	A novel fiber Michelson interferometer based on cascaded twin core fiber and side-hole fiber. , 2017, , .		0
45	Simultaneous strain and directional bending sensor based on eccentric-core fiber Bragg grating. , 2017, , .		1
46	An in-fiber Mach-Zehnder interferometer based on dual side-hole fiber for highly sensitive measurement of curvature. , 2017, , .		1
47	Temperature insensitive one-dimensional bending vector sensor based on eccentric-core fiber and air cavity Fabry-Perot interferometer. Journal of Optics (United Kingdom), 2017, 19, 045705.	1.0	25
48	High Sensitive Directional Torsion Sensor Based on a Segmented Long-Period Fiber Grating. IEEE Photonics Technology Letters, 2017, 29, 2179-2182.	1.3	21
49	A Stable Twin-Core-Fiber-Based Integrated Coupler Fabricated by Thermally Diffused Core Technique. Journal of Lightwave Technology, 2017, 35, 5473-5478.	2.7	15
50	Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer. Optics Express, 2016, 24, 16247.	1.7	17
51	Highly Sensitive Directional Bending Sensor Based on Eccentric Core Fiber Mach–Zehnder Modal Interferometer. IEEE Sensors Journal, 2016, 16, 6899-6902.	2.4	32
52	Pure Directional Bending Measurement With a Fiber Bragg Grating at the Connection Joint of Eccentric-Core and Single-Mode Fibers. Journal of Lightwave Technology, 2016, 34, 3288-3292.	2.7	56
53	Two-Axis Bending Sensor Based on Cascaded Eccentric Core Fiber Bragg Gratings. IEEE Photonics Technology Letters, 2016, 28, 1237-1240.	1.3	55
54	A hybrid Michelson-FP interference fiber sensor. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
55	High-order polarization mode crosstalk effect: a calibration scheme of white light-based optical coherence domain polarimetry. Proceedings of SPIE, 2015, , .	0.8	0
56	A phase-shifted long period fiber grating based on filament heating method for simultaneous measurement of strain and temperature. Journal of Optics (United Kingdom), 2015, 17, 075801.	1.0	26
57	Measurement for polarization mode dispersion of LiNbO3 integrated waveguide modulator used white light interferometry. , 2015, , .		0
58	Simultaneous evaluation of two branches of a multifunctional integrated optic chip with an ultra-simple dual-channel configuration. Photonics Research, 2015, 3, 115.	3.4	10
59	Full Evaluation of Polarization Characteristics of Multifunctional Integrated Optic Chip With High Accuracy. Journal of Lightwave Technology, 2014, 32, 4243-4252.	2.7	18
60	Evanescent Field Absorption Sensor Based on Special U Shaped Optical Fiber. Advanced Materials Research, 2014, 981, 624-627.	0.3	0
61	In-Fiber Modal Interferometer Based on Coaxial Dual-Waveguide Fiber for Temperature Sensing. IEEE Photonics Technology Letters, 2014, 26, 264-266.	1.3	6
62	Refractive index insensitive temperature sensor based on hollow annular core fiber Mach-Zehnder interferometer. Proceedings of SPIE, 2014, , .	0.8	0
63	Ultra-high sensitive temperature sensor based on multimode fiber Mach-Zehnder interferometer. , 2014, , .		0
64	Semi-open cavity in-fiber Mach–Zehnder interferometer for temperature measurement with ultra-high sensitivity. Applied Optics, 2014, 53, 2696.	0.9	15
65	Refractive Index Sensing Characteristics of Single-Mode Fiber-Based Modal Interferometers. Journal of Lightwave Technology, 2014, 32, 1734-1740.	2.7	27
66	Simultaneous Measurement of Temperature and Curvature Based on Hollow Annular Core Fiber. IEEE Photonics Technology Letters, 2014, 26, 1128-1131.	1.3	30
67	Hybrid structured fiber-optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature. Optics Letters, 2014, 39, 5267.	1.7	115
68	Refractive index insensitive temperature sensor based on coaxial waveguide fiber modal interferometer. Proceedings of SPIE, 2013, , .	0.8	0
69	Performance tests of PM optical fiber coupler based on optical coherence domain polarimetry. Proceedings of SPIE, 2012, , .	0.8	2
70	A wavelength division multiplexer based on a cocentric core fiber. , 2012, , .		1
71	Ultra-sensitivity, ultra-large dynamic all-fiber optical coherence domain polarimetry. Proceedings of SPIE, 2012, , .	0.8	0
72	An integration strain sensor based on symmetrical twin-core fiber. Proceedings of SPIE, 2012, , .	0.8	0

#	Article	IF	Citations
73	Fabrication Technology of Embedded Multi-Elliptical-Cores Hollow Fiber. Sensor Letters, 2012, 10, 1391-1394.	0.4	1
74	A Novel Multiplexed Fiber Optic Deformation Sensing Scheme. Sensor Letters, 2012, 10, 1526-1528.	0.4	2
75	A Refractive Index Sensor Based on a Twin-Core Fiber Integrated Coupler. Sensor Letters, 2012, 10, 1457-1460.	0.4	1
76	Asymmetrical Twin-Core Fiber Based Michelson Interferometer for Refractive Index Sensing. Journal of Lightwave Technology, 2011, 29, 2985-2991.	2.7	38
77	In-fiber integrated accelerometer. Optics Letters, 2011, 36, 2056.	1.7	49
78	Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer. Optics Letters, 2011, 36, 3221.	1.7	22
79	Higher-order interference of low-coherence optical fiber sensors. Optics Letters, 2011, 36, 3380.	1.7	5
80	Endoscope two dimensional scanning fiber probe and the driving method., 2011,,.		2
81	A simplified common-path autocorrelator based on Fizeau interferometer. , 2011, , .		1
82	Linear-core-array optical fiber based laser beam shape convertor. Proceedings of SPIE, 2011, , .	0.8	0
83	An optical trapping based microfiber vibration sensor. Proceedings of SPIE, 2011, , .	0.8	1
84	An in-fiber refractometer based on asymmetrical twin-core fiber. Proceedings of SPIE, 2011, , .	0.8	1
85	A novel quasi-distributed sensing network based on non-balance Mach-Zehnder autocorrelator. , 2011, , \cdot		0
86	Fiber-optic dipping liquid analyzer: theoretical and experimental study of light transmission. Applied Optics, 2009, 48, 6928.	2.1	7
87	A fiber-optic liquid sensor for simultaneously measuring refractive index, surface tension, contact angle and viscosity. , 2009, , .		6
88	Soil deformation measurement based on optic fiber sensor. , 2007, , .		0
89	<title>Study on the passive-drawn fiber optic liquid analysis technique</title> ., 2007,,.		0