Zhengshan J Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4457183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2017, 2, .	39.5	1,204
2	Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 2020, 367, 1352-1358.	12.6	699
3	Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367, 1097-1104.	12.6	669
4	Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4%. Joule, 2019, 3, 177-190.	24.0	329
5	Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells. Joule, 2020, 4, 1759-1775.	24.0	284
6	Blade-Coated Perovskites on Textured Silicon for 26%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells. Joule, 2020, 4, 850-864.	24.0	281
7	Efficient Semitransparent Perovskite Solar Cells for 23.0%â€Efficiency Perovskite/Silicon Fourâ€Terminal Tandem Cells. Advanced Energy Materials, 2016, 6, 1601128.	19.5	240
8	Selecting tandem partners for silicon solar cells. Nature Energy, 2016, 1, .	39.5	229
9	Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite–Silicon Tandem Solar Cells. ACS Energy Letters, 2018, 3, 2173-2180.	17.4	194
10	Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 2020, 5, 657-665.	39.5	186
11	Controlling Thin-Film Stress and Wrinkling during Perovskite Film Formation. ACS Energy Letters, 2018, 3, 1225-1232.	17.4	148
12	Defect engineering in wide-bandgap perovskites for efficient perovskite–silicon tandem solar cells. Nature Photonics, 2022, 16, 588-594.	31.4	112
13	Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Optics Express, 2018, 26, 27441.	3.4	102
14	Techno-economic viability of silicon-based tandem photovoltaic modules in the United States. Nature Energy, 2018, 3, 747-753.	39.5	86
15	Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer. Solar Energy Materials and Solar Cells, 2017, 173, 59-65.	6.2	82
16	Series Resistance Measurements of Perovskite Solar Cells Using <i>J_{sc}</i> – <i>V_{oc}</i> Measurements. Solar Rrl, 2019, 3, 1800378.	5.8	61
17	PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters. IEEE Journal of Photovoltaics, 2015, 5, 1791-1799.	2.5	57
18	Predicted Power Output of Silicon-Based Bifacial Tandem Photovoltaic Systems. Joule, 2020, 4, 580-596.	24.0	46

Zhengshan J Yu

#	Article	IF	CITATIONS
19	15.3%-Efficient GaAsP Solar Cells on GaP/Si Templates. ACS Energy Letters, 2017, 2, 1911-1918.	17.4	44
20	Current-Matched III–V/Si Epitaxial Tandem Solar Cells with 25.0% Efficiency. Cell Reports Physical Science, 2020, 1, 100208.	5.6	36
21	Silicon heterojunction solar cells with effectively transparent front contacts. Sustainable Energy and Fuels, 2017, 1, 593-598.	4.9	34
22	Contact Resistivity of the p-Type Amorphous Silicon Hole Contact in Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 54-62.	2.5	34
23	20%-efficient epitaxial GaAsP/Si tandem solar cells. Solar Energy Materials and Solar Cells, 2019, 202, 110144.	6.2	33
24	Reducing sputter induced stress and damage for efficient perovskite/silicon tandem solar cells. Journal of Materials Chemistry A, 2022, 10, 1343-1349.	10.3	27
25	Sub-micrometer random-pyramid texturing of silicon solar wafers with excellent surface passivation and low reflectance. Solar Energy Materials and Solar Cells, 2020, 218, 110761.	6.2	24
26	Realization and characterization of an SIS heterojunction. Superlattices and Microstructures, 2009, 46, 664-671.	3.1	19
27	Low temperature characteristic of ITO/SiO _{<i>x</i>} /c-Si heterojunction solar cell. Journal Physics D: Applied Physics, 2015, 48, 355101.	2.8	16
28	Defect engineering of pâ€ŧype silicon heterojunction solar cells fabricated using commercialâ€grade Iowâ€lifetime silicon wafers. Progress in Photovoltaics: Research and Applications, 2021, 29, 1165-1179.	8.1	16
29	Progress with Defect Engineering in Silicon Heterojunction Solar Cells. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100170.	2.4	16
30	Origins of hydrogen that passivates bulk defects in silicon heterojunction solar cells. Applied Physics Letters, 2019, 115, .	3.3	15
31	Application of spectral beam splitting using Wavelength-Selective filters for Photovoltaic/Concentrated solar power hybrid plants. Applied Thermal Engineering, 2022, 201, 117823.	6.0	13
32	Lowâ€refractiveâ€index nanoparticle interlayers to reduce parasitic absorption in metallic rear reflectors of solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700179.	1.8	12
33	Evaluation of spectrum-splitting dichroic mirrors for PV mirror tandem solar cells. , 2015, , .		10
34	Silicon wafers with optically specular surfaces formed by chemical polishing. Journal of Materials Science: Materials in Electronics, 2016, 27, 10270-10275.	2.2	10
35	Effect of rapid thermal annealing on the compositional ratio and interface of Cu(In,Ga)Se2 solar cells by XPS. Applied Surface Science, 2013, 264, 459-463.	6.1	9
36	GaAs/silicon PVMirror tandem photovoltaic miniâ€module with 29.6% efficiency with respect to the outdoor global irradiance. Progress in Photovoltaics: Research and Applications, 2019, 27, 469-475.	8.1	9

Zhengshan J Yu

#	Article	IF	CITATIONS
37	Pâ€ŧype Upgraded Metallurgicalâ€Grade Multicrystalline Silicon Heterojunction Solar Cells with Open ircuit Voltages over 690 mV. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900319.	1.8	9
38	PVMirrors: Hybrid PV/CSP collectors that enable lower LCOEs. AIP Conference Proceedings, 2017, , .	0.4	8
39	Aluminum–silicon interdiffusion in silicon heterojunction solar cells with a-Si:H(i)/a-Si:H(n/p)/Al rear contacts. Journal Physics D: Applied Physics, 2021, 54, 134002.	2.8	7
40	< 700 mV Open-Circuit Voltages on Defect-Engineered P-type Silicon Heterojunction Solar Cells on Czochralski and Multicrystalline Wafers. , 2018, , .		5
41	Investigation of ultraviolet response enhanced PV cell with silicon-based SINP configuration. Science China Technological Sciences, 2010, 53, 1028-1037.	4.0	4
42	Influence of surface passivation on the minority carrier lifetime, Fe-B pair density and recombination center concentration. Science Bulletin, 2010, 55, 1828-1833.	1.7	4
43	Sputtered Aluminum Oxide and p ⁺ Amorphous Silicon Back-Contact for Improved Hole Extraction in Polycrystalline CdSe _x Te _{1-x} and CdTe Photovoltaics. , 2019, , .		2
44	Power Losses in the Front Transparent Conductive Oxide Layer of Silicon Heterojunction Solar Cells: Design Guide for Single-Junction and Four-Terminal Tandem Applications. IEEE Journal of Photovoltaics, 2020, 10, 326-334.	2.5	2
45	Parametric study about performances of a solar photovoltaic/thermal hybrid using a spectral beam splitting technique. Journal of Renewable and Sustainable Energy, 2022, 14, .	2.0	2
46	Modeling of GaAs/Silicon PVMirror tandem system: A case study. , 2016, , .		1
47	Tandem Solar Cells with Infrared-Tuned Silicon Bottom Cells. , 2016, , .		1
48	Properties and Imaging of Thick Doped Amorphous Silicon in Direct Contact with Aluminum For Use in Silicon Heterojunction Solar Cells. , 2018, , .		0
49	Manufacturable Perovskite/Silicon Tandems with Solution-Processed Perovskites on Textured Silicon Bottom Cells. , 2020, , .		0
50	Diffusion profiles beneath silicon heterojunction contacts reduce contact resistivity and increase efficiency. , 2020, , .		0