Limin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4456873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interface-Confined Ferrous Centers for Catalytic Oxidation. Science, 2010, 328, 1141-1144.	6.0	866
2	Evolution of oxygen vacancies in MnOx-CeO2 mixed oxides for soot oxidation. Applied Catalysis B: Environmental, 2018, 223, 91-102.	10.8	401
3	Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 2018, 220, 462-470.	10.8	379
4	Shape effect of Pt/CeO 2 catalysts on the catalytic oxidation of toluene. Chemical Engineering Journal, 2016, 306, 1234-1246.	6.6	280
5	Controllable synthesis of 3D hierarchical Co ₃ O ₄ nanocatalysts with various morphologies for the catalytic oxidation of toluene. Journal of Materials Chemistry A, 2018, 6, 498-509.	5.2	268
6	Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chemistry, 2014, 16, 2490-2499.	4.6	267
7	Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Alkane Fuels over Bifunctional Zeolite-Supported Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2014, 2, 683-691.	3.2	204
8	Conversion of fructose into 5-hydroxymethylfurfural and alkyl levulinates catalyzed by sulfonic acid-functionalized carbon materials. Green Chemistry, 2013, 15, 2895.	4.6	188
9	Selective Hydrogenation of Biomass-Based 5-Hydroxymethylfurfural over Catalyst of Palladium Immobilized on Amine-Functionalized Metal–Organic Frameworks. ACS Catalysis, 2015, 5, 722-733.	5.5	165
10	Adsorption of VOCs on reduced graphene oxide. Journal of Environmental Sciences, 2018, 67, 171-178.	3.2	145
11	Gaseous CO and toluene co-oxidation over monolithic core–shell Co ₃ O ₄ -based hetero-structured catalysts. Journal of Materials Chemistry A, 2019, 7, 16197-16210.	5.2	134
12	Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 2018, 238, 328-338.	10.8	112
13	Effect of CeO2 morphologies on toluene catalytic combustion. Catalysis Today, 2019, 332, 177-182.	2.2	111
14	Metalloporphyrin-based organic polymers for carbon dioxide fixation to cyclic carbonate. Journal of Materials Chemistry A, 2015, 3, 9807-9816.	5.2	110
15	The Applications of Morphology Controlled ZnO in Catalysis. Catalysts, 2016, 6, 188.	1.6	110
16	Conversion of Cellulose and Cellobiose into Sorbitol Catalyzed by Ruthenium Supported on a Polyoxometalate/Metal–Organic Framework Hybrid. ChemSusChem, 2013, 6, 1545-1555.	3.6	107
17	<i>In situ</i> DRIFT spectroscopy insights into the reaction mechanism of CO and toluene co-oxidation over Pt-based catalysts. Catalysis Science and Technology, 2019, 9, 4538-4551.	2.1	103
18	Plasma-catalysis of metal loaded SBA-15 for toluene removal: Comparison of continuously introduced and adsorption-discharge plasma system. Chemical Engineering Journal, 2016, 283, 276-284.	6.6	102

#	Article	IF	CITATIONS
19	Selective hydrogenation of phenol and related derivatives. Catalysis Science and Technology, 2014, 4, 3555-3569.	2.1	95
20	CO2 hydrogenation to methanol over Cu/ZnO plate model catalyst: Effects of reducing gas induced Cu nanoparticle morphology. Chemical Engineering Journal, 2019, 374, 221-230.	6.6	81
21	Oneâ€Step Approach to 2,5â€Diformylfuran from Fructose by Proton―and Vanadiumâ€Containing Graphitic Carbon Nitride. ChemCatChem, 2014, 6, 3174-3181.	1.8	74
22	Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation. Chemical Engineering Journal, 2019, 369, 18-25.	6.6	74
23	Direct Selective Hydrogenation of Phenol and Derivatives over Polyanilineâ€Functionalized Carbonâ€Nanotubeâ€Supported Palladium. ChemPlusChem, 2013, 78, 142-148.	1.3	70
24	Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction. Catalysis Letters, 2007, 116, 63-69.	1.4	69
25	Oneâ€5tep Approach to 2,5â€Diformylfuran from Fructose by Using a Bifunctional and Recyclable Acidic Polyoxometalate Catalyst. ChemPlusChem, 2014, 79, 1448-1454.	1.3	69
26	Amine-functionalized metal-organic frameworks for the transesterification of triglycerides. Journal of Materials Chemistry A, 2014, 2, 7205-7213.	5.2	68
27	On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature. Catalysis Today, 2015, 242, 274-286.	2.2	66
28	High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catalysis Today, 2017, 281, 527-533.	2.2	64
29	Efficient production of 5-hydroxymethylfurfural and alkyl levulinate from biomass carbohydrate using ionic liquid-based polyoxometalate salts. RSC Advances, 2014, 4, 4194-4202.	1.7	63
30	In situ FT-IR study and evaluation of toluene abatement in different plasma catalytic systems over metal oxides loaded Î ³ -Al2O3. Catalysis Communications, 2016, 84, 61-66.	1.6	63
31	Methanol plasma-catalytic oxidation over CeO2 catalysts: Effect of ceria morphology and reaction mechanism. Chemical Engineering Journal, 2019, 369, 233-244.	6.6	62
32	Highly efficient Cu/CeO2-hollow nanospheres catalyst for the reverse water-gas shift reaction: Investigation on the role of oxygen vacancies through in situ UV-Raman and DRIFTS. Applied Surface Science, 2020, 516, 146035.	3.1	57
33	Ruthenium complex immobilized on poly(4-vinylpyridine)-functionalized carbon-nanotube for selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. RSC Advances, 2015, 5, 5933-5940.	1.7	55
34	Roles of nitrogen species on nitrogen-doped CNTs supported Cu-ZrO2 system for carbon dioxide hydrogenation to methanol. Catalysis Today, 2018, 307, 212-223.	2.2	55
35	Effect of calcium addition in plasma catalysis for toluene removal by Ni/ZSM-5 : Acidity/basicity, catalytic activity and reaction mechanism. Journal of Hazardous Materials, 2020, 387, 122004.	6.5	48
36	The Mechanism of Non-thermal Plasma Catalysis on Volatile Organic Compounds Removal. Catalysis Surveys From Asia, 2018, 22, 73-94.	1.0	46

#	Article	IF	CITATIONS
37	Reciprocal regulation between support defects and strong metal-support interactions for highly efficient reverse water gas shift reaction over Pt/TiO2 nanosheets catalysts. Applied Catalysis B: Environmental, 2021, 298, 120507.	10.8	45
38	Carbon dioxide hydrogenation to methanol over Cu/ZrO2/CNTs: effect of carbon surface chemistry. RSC Advances, 2015, 5, 45320-45330.	1.7	44
39	Inhibition Effect of Phosphorus Poisoning on the Dynamics and Redox of Cu Active Sites in a Cu-SSZ-13 NH ₃ -SCR Catalyst for NO <i>_x</i> Reduction. Environmental Science & Technology, 2021, 55, 12619-12629.	4.6	43
40	Chemical Fixation of CO ₂ by Using Carbon Material-Grafted <i>N</i> -Heterocyclic Carbene Silver and Copper Complexes. ACS Applied Nano Materials, 2018, 1, 6463-6476.	2.4	42
41	Plasma-Assisted Surface Interactions of Pt/CeO2 Catalyst for Enhanced Toluene Catalytic Oxidation. Catalysts, 2019, 9, 2.	1.6	42
42	Active site structure study of Cu/Plate ZnO model catalysts for CO2 hydrogenation to methanol under the real reaction conditions. Journal of CO2 Utilization, 2020, 37, 55-64.	3.3	42
43	Enhancement of the non-thermal plasma-catalytic system with different zeolites for toluene removal. RSC Advances, 2015, 5, 72113-72120.	1.7	41
44	Metal-Free <i>N</i> -Formylation of Amines with CO ₂ and Hydrosilane by Nitrogen-Doped Graphene Nanosheets. ACS Applied Materials & Interfaces, 2019, 11, 38838-38848.	4.0	38
45	Visible-Light-Induced Catalytic Transfer Hydrogenation of Aromatic Aldehydes by Palladium Immobilized on Amine-Functionalized Iron-Based Metal–Organic Frameworks. ACS Applied Nano Materials, 2018, 1, 4247-4257.	2.4	36
46	Selective hydrogenation of phenol and derivatives over an ionic liquid-like copolymer stabilized palladium catalyst in aqueous media. RSC Advances, 2013, 3, 4171.	1.7	33
47	Transient inâ€situ DRIFTS Investigation of Catalytic Oxidation of Toluene over αâ€, γ―and βâ€MnO _{2ChemCatChem, 2020, 12, 1046-1054.}	sub> 1.8	33
48	Hydrogenation of Levulinic Acid into γ-Valerolactone Over Ruthenium Catalysts Supported on Metal–Organic Frameworks in Aqueous Medium. Catalysis Letters, 2016, 146, 2041-2052.	1.4	32
49	Plasma-Catalytic CO ₂ Hydrogenation over a Pd/ZnO Catalyst: <i>In Situ</i> Probing of Gas-Phase and Surface Reactions. Jacs Au, 2022, 2, 1800-1810.	3.6	32
50	Nonthermal plasma catalysis for toluene decomposition over BaTiO3-based catalysts by Ce doping at A-sites: The role of surface-reactive oxygen species. Journal of Hazardous Materials, 2021, 405, 124156.	6.5	31
51	Hydrogen Treatment-Induced Surface Reconstruction:  Formation of Superoxide Species on Activated Carbon over Ag/Activated Carbon Catalysts for Selective Oxidation of CO in H2-Rich Gases. Journal of Physical Chemistry C, 2007, 111, 2229-2234.	1.5	28
52	Hydrodeoxygenation of Phenol and Derivatives over an Ionic Liquidâ€Like Copolymer Stabilized Nanocatalyst in Aqueous Media. ChemCatChem, 2013, 5, 1598-1605.	1.8	28
53	Highly efficient Cu/anatase TiO 2 {001}-nanosheets catalysts for methanol synthesis from CO 2. Journal of Energy Chemistry, 2018, 27, 381-388.	7.1	27
54	Plasma-Catalytic Oxidation of Toluene on MnxOy at Atmospheric Pressure and Room Temperature. Plasma Chemistry and Plasma Processing, 2014, 34, 1141-1156.	1.1	26

#	Article	IF	CITATIONS
55	Selective Conversion of Cellulose into Ethylene Glycol over Metal–Organic Framework-Derived Multifunctional Catalysts. Catalysis Letters, 2014, 144, 1728-1734.	1.4	24
56	A computational study on the hydrogenation of CO2 catalyzed by a tetraphos-ligated cobalt complex: monohydride vs. dihydride. Catalysis Science and Technology, 2015, 5, 1006-1013.	2.1	23
57	Adsorption-discharge plasma system for toluene decomposition over Ni-SBA catalyst: In situ observation and humidity influence study. Chemical Engineering Journal, 2020, 382, 122950.	6.6	23
58	Titanate nanotube-promoted chemical fixation of carbon dioxide to cyclic carbonate: a combined experimental and computational study. Catalysis Science and Technology, 2016, 6, 780-790.	2.1	20
59	Carbon-Supported Silver Catalysts for CO Selective Oxidation in Excess Hydrogen. Journal of Natural Gas Chemistry, 2006, 15, 181-190.	1.8	19
60	Surface reactive species on MnOx(0.4)-CeO2 catalysts towards soot oxidation assisted with pulse dielectric barrier discharge. Journal of Rare Earths, 2014, 32, 153-158.	2.5	19
61	Catalytic Performance of Toluene Combustion over Pt Nanoparticles Supported on Pore-Modified Macro-Meso-Microporous Zeolite Foam. Nanomaterials, 2020, 10, 30.	1.9	19
62	Reverse water-gas shift in a packed bed DBD reactor: Investigation of metal-support interface towards a better understanding of plasma catalysis. Applied Catalysis A: General, 2020, 591, 117407.	2.2	17
63	Silver catalysts supported over activated carbons for the selective oxidation of CO in excess hydrogen: effects of different treatments on the supports. Catalysis Letters, 2006, 111, 133-139.	1.4	15
64	Removal of toluene in adsorption–discharge plasma systems over a nickel modified SBA-15 catalyst. RSC Advances, 2016, 6, 104104-104111.	1.7	15
65	Macroporous Ni foam-supported Co3O4 nanobrush and nanomace hybrid arrays for high-efficiency CO oxidation. Journal of Environmental Sciences, 2019, 75, 136-144.	3.2	15
66	Synthesis, characterization and computational study of heterobimetallic CoFe complexes for mimicking hydrogenase. RSC Advances, 2013, 3, 3557.	1.7	14
67	Low Pt Loading High Catalytic Performance of PtFeNi/Carbon Nanotubes Catalysts for CO Preferential Oxidation in Excess Hydrogen I: Promotion Effects of Fe and/or Ni. Catalysis Letters, 2012, 142, 975-983.	1.4	12
68	The Study of Reverse Water Gas Shift Reaction Activity over Different Interfaces: The Design of Cu-Plate ZnO Model Catalysts. Catalysts, 2020, 10, 533.	1.6	11
69	Highly recyclable and magnetic catalyst of a metalloporphyrin-based polymeric composite for cycloaddition of CO ₂ to epoxide. RSC Advances, 2016, 6, 96455-96466.	1.7	10
70	Synergistic Effect of a Carbon Black Supported PtAg Nonâ€Alloy Bimetal Nanocatalyst for CO Preferential Oxidation in Excess Hydrogen. ChemCatChem, 2012, 4, 1960-1967.	1.8	9
71	The graphitic carbon strengthened synergetic effect between Pt and FeNi in CO preferential oxidation in excess hydrogen at low temperature. Catalysis Science and Technology, 2016, 6, 98-106.	2.1	9
72	Effect of plasma on catalytic conversion of CO ₂ with hydrogen over Pd/ZnO in a dielectric barrier discharge reactor. Journal Physics D: Applied Physics, 2019, 52, 244001.	1.3	8

#	Article	IF	CITATIONS
73	Hierarchically Nanoporous Titanium-Based Coordination Polymers for Photocatalytic Synthesis of Benzimidazole. ACS Applied Nano Materials, 2020, 3, 10720-10731.	2.4	8
74	Promotion effect of adsorbed water/OH on the catalytic performance of Ag/activated carbon catalysts for CO preferential oxidation in excess H2. Journal of Energy Chemistry, 2013, 22, 591-598.	7.1	6
75	Cu Catalyst Supported on Nitrogen and Phosphorus Co-Doped Carbon Nanosheets for Homocoupling of Terminal Alkynes Using CO ₂ as a Soft Oxidant. ACS Applied Nano Materials, 2021, 4, 4839-4852.	2.4	6
76	Direct Selective Hydrogenation of Phenol and Derivatives over Polyanilineâ€Functionalized Carbonâ€Nanotubeâ€Supported Palladium. ChemPlusChem, 2013, 78, 126-126.	1.3	1