Tatiana B Shatalova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4456858/publications.pdf

Version: 2024-02-01

60 papers 584

686830 13 h-index 713013 21 g-index

61 all docs

61 docs citations

times ranked

61

644 citing authors

#	Article	IF	CITATIONS
1	Powder Mixture for the Production of Microporous Ceramics Based on Hydroxyapatite. Ceramics, 2022, 5, 108-119.	1.0	2
2	Bioceramics Based on Î ² -Calcium Pyrophosphate. Materials, 2022, 15, 3105.	1.3	6
3	Oxidation studies of UM3 (MÂ=ÂRu, Rh, Pd) intermetallides. Journal of Nuclear Materials, 2022, 568, 153885.	1.3	2
4	Calcium Phosphate Powder for Obtaining of Composite Bioceramics. Inorganic Materials: Applied Research, 2021, 12, 34-39.	0.1	4
5	Investigation of the KLa(SO4)2·H2O–SrSO4·0.5H2O System. Russian Journal of Inorganic Chemistry, 2021, 66, 405-411.	0.3	5
6	Fine Biocompatible Powders Synthesized from Calcium Lactate and Ammonium Sulfate. Ceramics, 2021, 4, 391-396.	1.0	0
7	Coarse-grain alpha-alumina films with highly ordered porous structure. Microporous and Mesoporous Materials, 2020, 294, 109840.	2.2	13
8	Ca2P2O7–Ca(PO3)2 Ceramic Obtained by Firing β-Tricalcium Phosphate and Monocalcium Phosphate Monohydrate Based Cement Stone. Glass and Ceramics (English Translation of Steklo I Keramika), 2020, 77, 165-172.	0.2	9
9	Chemical Transformations as a Tool for Controlling the Properties of Calcium Carbonate Powder. Glass and Ceramics (English Translation of Steklo I Keramika), 2020, 77, 145-148.	0.2	1
10	Ceramics Based on a Powder Mixture of Calcium Hydroxyapatite, Monocalcium Phosphate Monohydrate, and Sodium Hydrogen Phosphate Homogenized under Mechanical Activation Conditions. Inorganic Materials: Applied Research, 2020, 11, 879-885.	0.1	5
11	Ceramics in the Ca2P2O7–Ca(PO3)2 System Obtained by Annealing of the Samples Made from Hardening Mixtures Based on Calcium Citrate Tetrahydrate and Monocalcium Phosphate Monohydrate. Inorganic Materials: Applied Research, 2020, 11, 777-786.	0.1	9
12	Thermal Transformations in Hardening Compositions Based on Hydroxyapatite, Monocalcium Phosphate Monohydrate, and Polymeric Binders. Glass and Ceramics (English Translation of Steklo I) Tj ETQq0 0	0 n g.B2 T /O	venbock 10 Tf 5
13	Properties of Calcium Phosphate Powder Synthesized from Calcium Chloride and Potassium Pyrophosphate. Inorganic Materials: Applied Research, 2020, 11, 44-49.	0.1	2
14	Meet the Cerium(IV) Phosphate Sisters: Ce IV (OH)PO 4 and Ce IV 2 O(PO 4) 2. Chemistry - A European Journal, 2020, 26, 12188-12193.	1.7	7
15	Organic-Inorganic Hybrid Materials for Room Temperature Light-Activated Sub-ppm NO Detection. Nanomaterials, 2020, 10, 70.	1.9	11
16	Synthesis of double ammonium'calcium pyrophosphate monohydrate Ca(NH4)2P2O7•H2O as the p recursor of biocompatible phases of calcium phosphate ceramics. Russian Chemical Bulletin, 2020, 69, 139-147.	0.4	5
17	Biocompatibility of biphasic \hat{l}_{\pm},\hat{l}^2 -tricalcium phosphate ceramics in vitro. Bioactive Materials, 2020, 5, 423-427.	8.6	30
18	Calcium-phosphate powder for production of composite ceramics. Materialovedenie, 2020, , 39-44.	0.0	0

#	Article	IF	CITATIONS
19	The Discovery of Few-Layered Graphene Flakes in Paragenetic Association with Other Carbon Nano-sized Mineral Phases. Doklady Earth Sciences, 2020, 495, 827-830.	0.2	O
20	Calcium pyrophosphate powder synthesized from phosphoric acid and calcium carbonate. Materialovedenie, 2020, , 42-48.	0.0	0
21	Synthesis of the Nanoscale Calcium Hydroxyapatite from Calcium Malate and Ammonium Hydrophosphate. Inorganic Materials: Applied Research, 2019, 10, 841-845.	0.1	2
22	Synthesis of Monetite from Calcium Hydroxyapatite and Monocalcium Phosphate Monohydrate under Mechanical Activation Conditions. Russian Journal of Inorganic Chemistry, 2019, 64, 1088-1094.	0.3	16
23	Size Effects in Nanocrystalline Thoria. Journal of Physical Chemistry C, 2019, 123, 23167-23176.	1.5	19
24	Nanocomposites SnO2/SiO2 for CO Gas Sensors: Microstructure and Reactivity in the Interaction with the Gas Phase. Materials, 2019, 12, 1096.	1.3	22
25	Modified carbon nanotubes for water-based cathode slurries for lithium–sulfur batteries. Journal of Materials Research, 2019, 34, 634-641.	1.2	4
26	Electrochemical growth of ZnO photonic crystals. International Journal of Nanotechnology, 2019, 16, 389.	0.1	0
27	Nanocomposites SnO2/SiO2:SiO2 Impact on the Active Centers and Conductivity Mechanism. Materials, 2019, 12, 3618.	1.3	8
28	Crystallization Pathways of Cerium(IV) Phosphates Under Hydrothermal Conditions: A Search for New Phases with a Tunnel Structure. European Journal of Inorganic Chemistry, 2019, 2019, 3242-3248.	1.0	9
29	Properties of calcium phosphate powder synthesized from calcium chloride and potassium pyrophosphate. Materialovedenie, 2019, , 37-42.	0.0	0
30	Ceramics based on powder mixture of calcium hydroxyapatite, monocalcium phosphate monohydrate and sodium hydrogen phosphate homogenized under conditions of mechanical activation. Materialovedenie, 2019, , 43-48.	0.0	0
31	Ceramics Based on Brushite Powder Synthesized from Calcium Nitrate and Disodium and Dipotassium Hydrogen Phosphates. Inorganic Materials, 2018, 54, 195-207.	0.2	11
32	Formation Efficiency of Porous Oxide Films in Aluminum Anodizing. Russian Journal of Electrochemistry, 2018, 54, 990-998.	0.3	13
33	Detection of Carbon Monoxide in Humid Air with Double-Layer Structures Based on Semiconducting Metal Oxides and Silicalite. Russian Journal of Applied Chemistry, 2018, 91, 1671-1679.	0.1	5
34	Synthesis of Carbon Fibers in the Decomposition of Acetylene and Propane–Butane Mixture in a Plasma Jet. Technical Physics Letters, 2018, 44, 1017-1019.	0.2	1
35	Calcium Phosphate Powder Synthesized from Calcium Acetate and Ammonium Hydrophosphate for Bioceramics Application. Ceramics, 2018, 1, 375-392.	1.0	7
36	Continuous Synthesis of Hydrogenated Graphene in Thermal Plasma. Journal of Structural Chemistry, 2018, 59, 773-779.	0.3	3

#	Article	IF	Citations
37	Fixation of atmospheric nitrogen by nanodiamonds. New Journal of Chemistry, 2018, 42, 11160-11164.	1.4	4
38	Synthesis of Hydrogenated Graphene during Acetylene Conversion in Helium Plasma Jet. High Energy Chemistry, 2018, 52, 343-347.	0.2	4
39	Ceramics Based on Powder Mixtures Containing Calcium Hydrogen Phosphates and Sodium Salts (Na2CO3, Na4P2O7, and NaPO3). Inorganic Materials, 2018, 54, 724-735.	0.2	6
40	Nanofibers of Semiconductor Oxides as Sensitive Materials for Detection of Gaseous Products Formed in Low-Temperature Pyrolysis of Polyvinyl Chloride. Russian Journal of Applied Chemistry, 2018, 91, 447-453.	0.1	4
41	Calcium pyrophosphate powder for production of bioceramics synthesized from pyrophosphoric acid and calcium acetate. Inorganic Materials: Applied Research, 2017, 8, 118-125.	0.1	14
42	Synthesis of calcium phosphate powder from calcium lactate and ammonium hydrogen phosphate for the fabrication of bioceramics. Inorganic Materials, 2017, 53, 859-868.	0.2	6
43	Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application. Ceramics International, 2017, 43, 1310-1317.	2.3	25
44	Electrochemical behavior of the graphene materials synthesized using low temperature plasma. Journal of Physics: Conference Series, 2017, 789, 012052.	0.3	1
45	The effect of reactor geometry on the synthesis of graphene materials in plasma jets. Journal of Physics: Conference Series, 2017, 857, 012040.	0.3	3
46	A new orthorhombic boron phase B _{51.5–52} obtained by dehydrogenation of "α-tetragonal boron― Journal of Materials Research, 2016, 31, 2773-2779.	1.2	13
47	Powders Mixtures Based on Ammonium Pyrophosphate and Calcium Carbonate for Preparation of Biocompatible Porous Ceramic in the CaO–P2O5 System. Refractories and Industrial Ceramics, 2016, 56, 502-509.	0.2	15
48	Calcium Phosphate Ceramic Based on Powder Synthesized From a Mixed-Anionic Solution. Glass and Ceramics (English Translation of Steklo I Keramika), 2016, 73, 25-31.	0.2	8
49	Ceramics based on calcium phosphate powder synthesized from calcium saccharate and ammonium hydrophosphate. Inorganic Materials: Applied Research, 2016, 7, 635-640.	0.1	7
50	Thermally stable, electrically conductive diamond material prepared by high-pressure, high-temperature processing of a graphite + boron carbide mixture. Inorganic Materials, 2015, 51, 225-229.	0.2	6
51	Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics. Inorganic Materials, 2015, 51, 1177-1184.	0.2	20
52	Phase equilibria in the tricalcium phosphate-mixed calcium sodium (potassium) phosphate systems. Russian Journal of Inorganic Chemistry, 2014, 59, 1219-1227.	0.3	31
53	Active Sites on Nanocrystalline Tin Dioxide Surface: Effect of Palladium and Ruthenium Oxides Clusters. Journal of Physical Chemistry C, 2014, 118, 21541-21549.	1.5	35
54	Synthesis of carbon nanotubes by high current divergent anode-channel plasma torch. Journal of Physics: Conference Series, 2014, 550, 012023.	0.3	16

#	Article	IF	CITATIONS
55	Chemical deposition of PbS on NASICON from aqueous solutions. Inorganic Materials, 2009, 45, 1081-1086.	0.2	1
56	Chemical and electrochemical processes in low-temperature superionic hydrogen sulfide sensors. Russian Journal of Electrochemistry, 2007, 43, 552-560.	0.3	14
57	XPS study of SnTe(100) oxidation by molecular oxygen. Surface Science, 2005, 584, 77-82.	0.8	36
58	Growth of polycrystalline GeTe films on Pb1 $\hat{a} \in xSnxTe$ (x = 0, 0.05 or 0.2) and BaF2 substrates. Mendeleev Communications, 2004, 14, 136-137.	0.6	0
59	XPS study of fresh and oxidized (Pb,Ge)Te surfaces. Surface and Interface Analysis, 2002, 34, 498-501.	0.8	9
60	XPS study of fresh and oxidized GeTe and (Ge,Sn)Te surface. Solid State Ionics, 2001, 141-142, 513-522.	1.3	73