Carl Persson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4456778/publications.pdf

Version: 2024-02-01

933447 752698 32 413 10 20 h-index citations g-index papers 33 33 33 466 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Small airways: an important but neglected target in the treatment of obstructive airway diseases. Trends in Pharmacological Sciences, 2008, 29, 340-345.	8.7	67
2	Theirs But to Die and Do: Primary Lysis of Eosinophils and Free Eosinophil Granules in Asthma. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 628-633.	5.6	59
3	Transepithelial exit of leucocytes: inflicting, reflecting or resolving airway inflammation?. Thorax, 2010, 65, 1111-1115.	5.6	36
4	Various Methods for Testing Nasal Responses in Vivo: A Critical Review. Acta Oto-Laryngologica, 1995, 115, 705-713.	0.9	30
5	Airways exudation of plasma macromolecules: Innate defense, epithelial regeneration, and asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 1271-1286.	2.9	26
6	Azithromycin augments rhinovirus-induced IFN \hat{l}^2 via cytosolic MDA5 in experimental models of asthma exacerbation. Oncotarget, 2017, 8, 31601-31611.	1.8	25
7	Primary lysis of eosinophils as a major mode of activation of eosinophils in human diseased tissues. Nature Reviews Immunology, 2013, 13, 902-902.	22.7	24
8	A cornucopia of drug discovery?. Nature Medicine, 1996, 2, 5-6.	30.7	21
9	Resolution of leucocyteâ€mediated mucosal diseases. A novel <i>in vivo</i> paradigm for drug development. British Journal of Pharmacology, 2012, 165, 2100-2109.	5.4	14
10	Lysis of primed eosinophils in severe asthma. Journal of Allergy and Clinical Immunology, 2013, 132, 1459-1460.	2.9	11
11	Clinical research, or classical clinical research?. Nature Medicine, 1999, 5, 714-715.	30.7	10
12	Viral induced overproduction of epithelial TSLP: Role in exacerbations of asthma and COPD?. Journal of Allergy and Clinical Immunology, 2018, 142, 712.	2.9	10
13	Early humoral defence: Contributing to confining COVIDâ€19 to conducting airways?. Scandinavian Journal of Immunology, 2021, 93, e13024.	2.7	10
14	Lytic eosinophils produce extracellular DNA traps as well as free eosinophil granules. Journal of Allergy and Clinical Immunology, 2018, 141, 1164.	2.9	9
15	<i>In vivo</i> observations provide insight into roles of eosinophils and epithelial cells in asthma. European Respiratory Journal, 2019, 54, 1900470.	6.7	9
16	â€~Bedside' observations challenge aspects of the â€~epithelial barrier hypothesis'. Nature Reviews Immunology, 2021, 21, 829.	22.7	7
17	Discoveries in complex biosystems. Nature Biotechnology, 1997, 15, 927-927.	17.5	6
18	HH Salter (1860s): taking cold as original cause and provocative of attacks of asthma. Thorax, 2013, 68, 489.1-489.	5.6	5

#	Article	IF	CITATIONS
19	Role of Primary Necrosis/Lysis of Submucosal Eosinophils in Obese Individuals with Asthma. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1468-1468.	5. 6	4
20	Eosinophil apoptosis–inducing drugs risk worsening rather than resolving asthma. Journal of Allergy and Clinical Immunology, 2015, 135, 1662.	2.9	4
21	Humoral First-Line Mucosal Innate Defence in vivo. Journal of Innate Immunity, 2020, 12, 373-386.	3.8	4
22	Early humoral defense under the radar: microvascular-epithelial cooperation at airways infection in asthma and health. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L503-L506.	2.9	4
23	Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy. European Respiratory Journal, 2014, 43, 1208-1211.	6.7	3
24	Glucocorticoids induce the production of the chemoattractant CCL20 in airway epithelium. European Respiratory Journal, 2015, 45, 859-860.	6.7	3
25	Drug-induced Death of Eosinophils. Promises and Pitfalls. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 605-606.	5.6	3
26	Epithelial repair in asthma: Defect or exaggerated?. Journal of Allergy and Clinical Immunology, 2022, 149, 1131-1132.	2.9	3
27	Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. European Respiratory Journal, 2014, 44, 1096-1098.	6.7	2
28	Epithelial perviousness in allergic airways disease. Journal of Allergy and Clinical Immunology, 2017, 140, 1211.	2.9	2
29	Reduced granulocyte counts in sputum may reflect aggravated disease. Journal of Allergy and Clinical Immunology, 2015, 135, 836.	2.9	1
30	Comment on review article by Kristina Johansson and Henry McSorley. Pediatric Allergy and Immunology, 2020, 31, 337-338.	2.6	1
31	Letter to Respiratory Medicine: "Drugs reducing transepithelial leukocyte traffic may worsen lung disease― Respiratory Medicine, 2011, 105, 1969.	2.9	0
32	Bronchial Mucosal Microcirculation in SARS-CoV-2 Infection: Role in Innate Humoral Defense?. American Journal of Respiratory and Critical Care Medicine, 2022, , .	5.6	0