Xiaodong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4456713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A rust fungus effector directly binds plant preâ€mRNA splice site to reprogram alternative splicing and suppress host immunity. Plant Biotechnology Journal, 2022, 20, 1167-1181.	8.3	29
2	First report of Calonectria canadiana causing peach fruit rot in China. Plant Disease, 2022, , .	1.4	1
3	Genetics of Resistance to Common Root Rot (Spot Blotch), Fusarium Crown Rot, and Sharp Eyespot in Wheat. Frontiers in Genetics, 2021, 12, 699342.	2.3	25
4	Genome-wide survey of the F-box/Kelch (FBK) members and molecular identification of a novel FBK gene TaAFR in wheat. PLoS ONE, 2021, 16, e0250479.	2.5	6
5	Two stripe rust effectors impair wheat resistance by suppressing import of host Fe – S protein into chloroplasts . Plant Physiology, 2021, 187, 2530-2543.	4.8	28
6	Mapping and Characterization of a Wheat Stem Rust Resistance Gene in Durum Wheat "Kronos― Frontiers in Plant Science, 2021, 12, 751398.	3.6	8
7	Wheat Apoplast-Localized Lipid Transfer Protein TaLTP3 Enhances Defense Responses Against Puccinia triticina. Frontiers in Plant Science, 2021, 12, 771806.	3.6	10
8	<i>WRKY</i> Transcription Factors Shared by BTH-Induced Resistance and <i>NPR1</i> -Mediated Acquired Resistance Improve Broad-Spectrum Disease Resistance in Wheat. Molecular Plant-Microbe Interactions, 2020, 33, 433-443.	2.6	27
9	Molecular identification and acquisition of interacting partners of a novel wheat F-box/Kelch gene TaFBK. Physiological and Molecular Plant Pathology, 2020, 112, 101564.	2.5	4
10	Rust effector PNPi interacting with wheat TaPR1a attenuates plant defense response. Phytopathology Research, 2020, 2, .	2.4	18
11	Identification and expression analysis of some wheat F-box subfamilies during plant development and infection by Puccinia triticina. Plant Physiology and Biochemistry, 2020, 155, 535-548.	5.8	17
12	Genome-Wide Identification of Effector Candidates With Conserved Motifs From the Wheat Leaf Rust Fungus Puccinia triticina. Frontiers in Microbiology, 2020, 11, 1188.	3.5	21
13	Genome-Wide Expression Profiling of Genes Associated with the Lr47-Mediated Wheat Resistance to Leaf Rust (Puccinia triticina). International Journal of Molecular Sciences, 2019, 20, 4498.	4.1	16
14	TaAMT2;3a, a wheat AMT2-type ammonium transporter, facilitates the infection of stripe rust fungus on wheat. BMC Plant Biology, 2019, 19, 239.	3.6	19
15	An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nature Communications, 2019, 10, 5571.	12.8	129
16	Systemic acquired resistance, NPR1, and pathogenesis-related genes in wheat and barley. Journal of Integrative Agriculture, 2018, 17, 2468-2477.	3.5	51
17	WRKY Transcription Factors Associated With NPR1-Mediated Acquired Resistance in Barley Are Potential Resources to Improve Wheat Resistance to Puccinia triticina. Frontiers in Plant Science, 2018, 9, 1486.	3.6	32
18	Suppression subtractive hybridization and microarray analysis reveal differentially expressed genes in the Lr39/41-mediated wheat resistance to Puccinia triticina. European Journal of Plant Pathology, 2018, 152, 479-492.	1.7	3

XIAODONG WANG

#	Article	IF	CITATIONS
19	Molecular identification of wheat leaf rust resistance genes in sixty Chinese wheat cultivars. Czech Journal of Genetics and Plant Breeding, 2018, 54, 1-8.	0.8	3
20	Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E913-E921.	7.1	554
21	A wheat NBS-LRR gene TaRGA19 participates in Lr19 -mediated resistance to Puccinia triticina. Plant Physiology and Biochemistry, 2017, 119, 1-8.	5.8	10
22	Genetic analysis and molecular mapping of a leaf rust resistance gene in the wheat line 19HRWSN-129. Czech Journal of Genetics and Plant Breeding, 2016, 52, 1-5.	0.8	0
23	A Conserved <i>Puccinia striiformis</i> Protein Interacts with Wheat NPR1 and Reduces Induction of <i>Pathogenesis</i> - <i>Related</i> Genes in Response to Pathogens. Molecular Plant-Microbe Interactions, 2016, 29, 977-989.	2.6	69
24	Wheat Stripe Rust Resistance Protein WKS1 Reduces the Ability of the Thylakoid-Associated Ascorbate Peroxidase to Detoxify Reactive Oxygen Species. Plant Cell, 2015, 27, 1755-1770.	6.6	133
25	Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia) Tj ETQq1	1 0.78431 4.8	14 rgBT /Ove
26	TaMDHAR4, a monodehydroascorbate reductase gene participates in the interactions between wheat and Puccinia striiformis f. sp. tritici. Plant Physiology and Biochemistry, 2014, 76, 7-16.	5.8	24
27	Wheat zinc finger protein TaLSD1, a negative regulator of programmed cell death, is involved in wheat resistance against stripe rust fungus. Plant Physiology and Biochemistry, 2013, 71, 164-172.	5.8	33
28	Effect of a benzothiadiazole on inducing resistance of soybean to Phytophthora sojae. Protoplasma, 2013, 250, 471-481.	2.1	16
29	A comparative approach expands the protein–protein interaction node of the immune receptor XA21 in wheat and rice. Genome, 2013, 56, 315-326.	2.0	18
30	vsiRNAs derived from the miRNA-generating sites of pri-tae-miR159a based on the BSMV system play positive roles in the wheat response to Puccinia striiformis f. sp. tritici through the regulation of taMyb3 expression. Plant Physiology and Biochemistry, 2013, 68, 90-95.	5.8	21
31	Functions of the lethal leaf-spot 1 gene in wheat cell death and disease tolerance to Puccinia striiformis. Journal of Experimental Botany, 2013, 64, 2955-2969.	4.8	26
32	<i>TaMCA4</i> , a Novel Wheat Metacaspase Gene Functions in Programmed Cell Death Induced by the Fungal Pathogen <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Molecular Plant-Microbe Interactions, 2012, 25, 755-764.	2.6	67
33	Wheat TaRab7 GTPase Is Part of the Signaling Pathway in Responses to Stripe Rust and Abiotic Stimuli. PLoS ONE, 2012, 7, e37146.	2.5	32