Silvia Morales de la Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4456688/publications.pdf

Version: 2024-02-01

686830 887659 17 423 13 17 citations g-index h-index papers 18 18 18 589 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Oneâ€Pot Conversion of Glucose into 5â€Hydroxymethylfurfural using MOFs and Brønstedâ€Acid Tandem Catalysts. Advanced Sustainable Systems, 2022, 6, .	2.7	7
2	Oneâ€Pot Conversion of Glucose into 5â€Hydroxymethylfurfural using MOFs and Brønstedâ€Acid Tandem Catalysts (Adv. Sustainable Syst. 5/2022). Advanced Sustainable Systems, 2022, 6, .	2.7	1
3	Isomerization of glucose to fructose catalyzed by metal–organic frameworks. Sustainable Energy and Fuels, 2021, 5, 3847-3857.	2.5	17
4	Solvent Additive-Induced Deactivation of the Cu–ZnO(Al2O3)-Catalyzed γ-Butyrolactone Hydrogenolysis: A Rare Deactivation Process. Industrial & Engineering Chemistry Research, 2021, 60, 15999-16010.	1.8	4
5	Dehydration of fructose to HMF in presence of (H3O)xSbxTe(2-x)O6 (x = 1, 1.1, 1.25) in H2O-MIBK. Molecular Catalysis, 2020, 481, 110276.	1.0	18
6	High enhancement of the hydrolysis rate of cellulose after pretreatment with inorganic salt hydrates. Green Chemistry, 2020, 22, 3860-3866.	4.6	31
7	Gel-Type and Macroporous Cross-Linked Copolymers Functionalized with Acid Groups for the Hydrolysis of Wheat Straw Pretreated with an Ionic Liquid. Catalysts, 2019, 9, 675.	1.6	13
8	Fractionation of Lignocellulosic Biomass by Selective Precipitation from Ionic Liquid Dissolution. Applied Sciences (Switzerland), 2019, 9, 1862.	1.3	41
9	Second-Generation Bioethanol Production Combining Simultaneous Fermentation and Saccharification of IL-Pretreated Barley Straw. ACS Sustainable Chemistry and Engineering, 2018, 6, 7086-7095.	3.2	41
10	Metal phosphide catalysts for the hydrotreatment of non-edible vegetable oils. Catalysis Today, 2018, 302, 242-249.	2.2	42
11	Chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments using heterogeneous catalysts. Catalysis Today, 2018, 302, 87-93.	2.2	23
12	Resource Recovery Potential From Lignocellulosic Feedstock Upon Lysis With Ionic Liquids. Frontiers in Bioengineering and Biotechnology, 2018, 6, 119.	2.0	20
13	Catalytic Epoxidation of Cyclohexene with Tert-butylhydroperoxide Using an Immobilized Molybdenum Catalyst. Topics in Catalysis, 2015, 58, 325-333.	1.3	14
14	H ₂ oxidation versus organic substrate oxidation in non-heme iron mediated reactions with H ₂ O ₂ . Chemical Communications, 2015, 51, 14992-14995.	2.2	4
15	Complete Chemical Hydrolysis of Cellulose into Fermentable Sugars through Ionic Liquids and Antisolvent Pretreatments. ChemSusChem, 2014, 7, 3467-3475.	3.6	26
16	Optimization of the process of chemical hydrolysis of cellulose to glucose. Cellulose, 2014, 21, 2397-2407.	2.4	42
17	High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chemical Engineering Journal, 2012, 181-182, 538-541.	6.6	7 9