
Gervasio Annes Degrazia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4456527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of Thermal and Roughness Effects on the Turbulent Characteristics of Experimentally Simulated Boundary Layers in a Wind Tunnel. International Journal of Environmental Research and Public Health, 2022, 19, 5134.	2.6	3
2	Regional-scale meteorological characteristics of the Vento Norte phenomenon observed in Southern Brazil. Environmental Fluid Mechanics, 2022, 22, 819-837.	1.6	3
3	Meteorological Observations of the Vento Norte Phenomenon in the Central Region of Rio Grande do Sul. Revista Brasileira De Meteorologia, 2021, 36, 367-376.	0.5	5
4	The Fallow Period Plays an Important Role in Annual CH4 Emission in a Rice Paddy in Southern Brazil. Sustainability, 2021, 13, 11336.	3.2	2
5	Employing Spectral Analysis to Obtain Dispersion Parameters in an Atmospheric Environment Driven by a Mesoscale Downslope Windstorm. International Journal of Environmental Research and Public Health, 2021, 18, 13027.	2.6	2
6	Energy and CO2 Fluxes over Native Fields of Southern Brazil through Multi-Objective Calibration of INLAND Model. Geosciences (Switzerland), 2020, 10, 479.	2.2	0
7	A quasi-experimental coastal region eddy diffusivity applied in the APUGRID model. Annales Geophysicae, 2020, 38, 603-610.	1.6	0
8	Employing the Method of Characteristics to Obtain the Solution of Spectral Evolution of Turbulent Kinetic Energy Density Equation in an Isotropic Flow. Atmosphere, 2019, 10, 612.	2.3	0
9	A Numerical Model to Estimate the Soil Thermal Conductivity Using Field Experimental Data. Applied Sciences (Switzerland), 2019, 9, 4799.	2.5	8
10	Development of an analytical Lagrangian model for passive scalar dispersion in low-wind speed meandering conditions. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 1007-1015.	2.6	1
11	An overview of the micrometeorological field campaign at Santa Maria, Southern Brazil: the Pampaâ€2016 experiment. Meteorological Applications, 2018, 25, 435-444.	2.1	2
12	Influence of Soil Properties in Different Management Systems: Estimating Soybean Water Changes in the Agro-IBIS Model. Earth Interactions, 2018, 22, 1-19.	1.5	4
13	Evaluation of Nocturnal Temperature Forecasts Provided by the Weather Research and Forecast Model for Different Stability Regimes and Terrain Characteristics. Boundary-Layer Meteorology, 2017, 162, 523-546.	2.3	11
14	Temperature autoâ€correlation and spectra functions in lowâ€wind meandering conditions. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 1881-1889.	2.7	21
15	Characterization of Wind Meandering in Low-Wind-Speed Conditions. Boundary-Layer Meteorology, 2016, 161, 165-182.	2.3	48
16	Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 693-702.	2.7	73
17	Employing the Hilbert–Huang Transform to analyze observed natural complex signals: Calm wind meandering cases. Physica A: Statistical Mechanics and Its Applications, 2016, 462, 1189-1196.	2.6	5
18	Eddy diffusivities for the convective boundary layer derived from LES spectral data. Atmospheric Pollution Research, 2015, 6, 605-611.	3.8	2

#	Article	IF	CITATIONS
19	Seasonality of soil water exchange in the soybean growing season in southern Brazil. Scientia Agricola, 2015, 72, 103-113.	1.2	6
20	Proposal of a new autocorrelation function in low wind speed conditions. Physica A: Statistical Mechanics and Its Applications, 2015, 438, 286-292.	2.6	9
21	Investigation of sea-breeze convergence in Salento Peninsula (southeastern Italy). Atmospheric Research, 2015, 160, 68-79.	4.1	27
22	Large-eddy simulation of sea breeze at an idealized peninsular site. Journal of Marine Systems, 2015, 148, 167-182.	2.1	4
23	Estimates of turbulent kinetic energy dissipation rate for a stratified flow in a wind tunnel. Physica A: Statistical Mechanics and Its Applications, 2015, 431, 175-187.	2.6	14
24	Energy Partitioning and Evapotranspiration over a Rice Paddy in Southern Brazil. Journal of Hydrometeorology, 2014, 15, 1975-1988.	1.9	37
25	The Influence of Submeso Processes on Stable Boundary Layer Similarity Relationships. Journals of the Atmospheric Sciences, 2014, 71, 207-225.	1.7	61
26	Largeâ€eddy simulation of the planetary boundary layer under baroclinic conditions during daytime and sunset turbulence. Meteorological Applications, 2013, 20, 56-71.	2.1	11
27	A simple parameterization for the turbulent kinetic energy transport terms in the convective boundary layer derived from large eddy simulation. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 583-595.	2.6	8
28	Sunset decay of the convective turbulence with Large-Eddy Simulation under realistic conditions. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 4481-4490.	2.6	27
29	Characterizing the relative role of low-frequency and turbulent processes in the nocturnal boundary layer through the analysis of two-point correlations of the wind components. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 1510-1521.	2.6	4
30	Derivation of third–order vertical velocity turbulence moment in the convective boundary layer from large eddy simulation data: an application to the dispersion modeling. Atmospheric Pollution Research, 2013, 4, 191-198.	3.8	3
31	The Coupling State of an Idealized Stable Boundary Layer. Boundary-Layer Meteorology, 2012, 145, 211-228.	2.3	26
32	Derivation of an eddy diffusivity coefficient depending on source distance for a shear dominated planetary boundary layer. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 6577-6586.	2.6	6
33	Employing Taylor and Heisenberg subfilter viscosities to simulate turbulent statistics in LES models. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 1020-1031.	2.6	4
34	An analytical model with temporal variable eddy diffusivity applied to contaminant dispersion in the atmospheric boundary layer. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 2576-2584.	2.6	5
35	A Simplified Model for Intermittent Turbulence in the Nocturnal Boundary Layer. Journals of the Atmospheric Sciences, 2011, 68, 1714-1729.	1.7	45
36	Large-Eddy Simulation of a microburst. Atmospheric Chemistry and Physics, 2011, 11, 9323-9331.	4.9	13

#	Article	IF	CITATIONS
37	Employing a Lagrangian stochastic dispersion model and classical diffusion experiments to evaluate two turbulence parameterization schemes. Atmospheric Pollution Research, 2011, 2, 384-393.	3.8	6
38	Theoretical study of the decaying convective turbulence in a shear-buoyancy PBL. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 3320-3328.	2.6	0
39	Well mixed condition verification in windy and low wind speed conditions. International Journal of Environment and Pollution, 2010, 40, 49.	0.2	6
40	A semi-analytical solution for the mean wind profile in the Atmospheric Boundary Layer: the convective case. Atmospheric Chemistry and Physics, 2010, 10, 2227-2236.	4.9	0
41	Morning Boundary-Layer Turbulent Kinetic Energy by Theoretical Models. Boundary-Layer Meteorology, 2010, 134, 23-39.	2.3	6
42	Estimation of the Kolmogorov constant for the Lagrangian velocity spectrum and structure function under different PBL stability regimes generated by LES. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 4009-4017.	2.6	6
43	Autocorrelation function formulations and the turbulence dissipation rate: Application to dispersion models. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 5808-5813.	2.6	0
44	Simulating the characteristic patterns of the dispersion during sunset PBL. Atmospheric Research, 2010, 98, 274-284.	4.1	6
45	Difusão de contaminantes em condições de vento fraco empregando um modelo estocástico Lagrangeano. Revista Brasileira De Meteorologia, 2009, 24, 364-377.	0.5	Ο
46	A interação do vento local no interior de um vale com o escoamento de grande escala - análise de dois estudos de caso. Revista Brasileira De Meteorologia, 2009, 24, 436-447.	0.5	2
47	Estimation of the Kolmogorov constant by large-eddy simulation in the stable PBL. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 1500-1508.	2.6	3
48	Measurements of the Kolmogorov constant from laboratory and geophysical wind data. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 3745-3751.	2.6	4
49	A Variable Mesh Spacing for Large-Eddy Simulation Models in the Convective Boundary Layer. Boundary-Layer Meteorology, 2009, 131, 277-292.	2.3	9
50	Turbulence Intensity Parameters over a Very Complex Terrain. Boundary-Layer Meteorology, 2009, 133, 35-45.	2.3	32
51	Employing turbulent and meandering time scales to modeling the contaminants enhanced horizontal dispersion. Atmospheric Research, 2009, 93, 811-817.	4.1	5
52	Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes?. Agricultural and Forest Meteorology, 2009, 149, 1-10.	4.8	81
53	Turbulent statistical characteristics associated to the north wind phenomenon in southern Brazil with application to turbulent diffusion. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 4376-4386.	2.6	12
54	Comparing spectra and cospectra of turbulence over different surface boundary conditions. Physica A: Statistical Mechanics and Its Applications, 2008, 387, 4927-4939.	2.6	11

#	Article	IF	CITATIONS
55	Estimation of the Lagrangian Kolmogorov constant from Eulerian measurements for distinct Reynolds number with application to pollution dispersion model. Atmospheric Environment, 2008, 42, 2415-2423.	4.1	3
56	Turbulence dissipation rate derivation for meandering occurrences in a stable planetary boundary layer. Atmospheric Chemistry and Physics, 2008, 8, 1713-1721.	4.9	6
57	Chapter 4.1 Lagrangian particle model simulation of tracer dispersion in stable low wind speed conditions. Developments in Environmental Science, 2007, 6, 352-361.	0.5	0
58	Poster 24 One-dimensional eddy diffusivities for growing turbulence in the convective boundary layer. Developments in Environmental Science, 2007, 6, 808-810.	0.5	0
59	Derivation of a decorrelation timescale depending on source distance for inhomogeneous turbulence in a convective boundary layer. Physica A: Statistical Mechanics and Its Applications, 2007, 374, 55-65.	2.6	3
60	Vertical, lateral and longitudinal eddy diffusivities for a decaying turbulence in the convective boundary layer. Ecological Modelling, 2007, 204, 516-522.	2.5	4
61	A new model for the CBL growth based on the turbulent kinetic energy equation. Environmental Fluid Mechanics, 2007, 7, 409-419.	1.6	2
62	Theoretical considerations of meandering winds in simplified conditions. Boundary-Layer Meteorology, 2007, 125, 279-287.	2.3	23
63	Semi-analytical solution of the asymptotic Langevin Equation by the Picard Iterative Method. Environmental Modelling and Software, 2006, 21, 406-410.	4.5	7
64	Parameterization of meandering phenomenon in a stable atmospheric boundary layer. Physica A: Statistical Mechanics and Its Applications, 2006, 368, 247-256.	2.6	4
65	Intermittency and the Exchange of Scalars in the Nocturnal Surface Layer. Boundary-Layer Meteorology, 2006, 119, 41-55.	2.3	61
66	Representing intermittency in turbulent fluxes: An application to the stable atmospheric boundary layer. Physica A: Statistical Mechanics and Its Applications, 2005, 354, 88-94.	2.6	3
67	Analytical solution of the advection–diffusion equation with nonlocal closure of the turbulent diffusion. Environmental Modelling and Software, 2005, 20, 1347-1351.	4.5	10
68	An Analysis Of Sonic Anemometer Observations In Low Wind Speed Conditions. Boundary-Layer Meteorology, 2005, 114, 179-203.	2.3	149
69	Atmospheric Turbulence Decay During the Solar Total Eclipse of 11 August 1999. Boundary-Layer Meteorology, 2004, 111, 301-311.	2.3	29
70	A Theoretical Model for the Study of Convective Turbulence Decay and Comparison with Large-Eddy Simulation Data. Boundary-Layer Meteorology, 2003, 107, 143-155.	2.3	39
71	Lagrangian stochastic dispersion modelling for the simulation of the release of contaminants from tall and low sources. Meteorologische Zeitschrift, 2002, 11, 89-97.	1.0	17
72	Multifractal model for eddy diffusivity and counter-gradient term in atmospheric turbulence. Physica A: Statistical Mechanics and Its Applications, 2001, 295, 219-223.	2.6	16

#	Article	IF	CITATIONS
73	Estimation Of The Lagrangian Structure Function Constant C0 From Surface-Layer Wind Data. Boundary-Layer Meteorology, 2000, 95, 249-270.	2.3	25
74	A Lagrangian Decorrelation Time Scale in the Convective Boundary Layer. Boundary-Layer Meteorology, 1998, 86, 525-534.	2.3	13
75	Energy spectra of the stable boundary layer: A theoretical model. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1992, 14, 75-86.	0.4	2
76	A model for eddy diffusivity in a stable boundary layer. Boundary-Layer Meteorology, 1992, 58, 205-214.	2.3	37
77	Influência da constante de Corrsin no cálculo dos coeficientes de difusão turbulentos. Ciência E Natura, 0, , 79.	0.0	0
78	Decaimento da turbulência convectiva: uma estimativa do coeficiente de difusão turbulento na camada residual. Ciência E Natura, 0, , 63.	0.0	0
79	Evaluation of a time dependent air pollution model with a new vertical turbulent parameterization. Ciência E Natura, 0, , 127.	0.0	0
80	Simulação da dispersão de poluentes na camada limite planetária utilizando um sistema de modelos. Ciência E Natura, 0, , 09.	0.0	1
81	Modelo euleriano semi-analÃŧico para a dispersão de contaminantes na Camada Limite Planetária. Ciência E Natura, 0, , 113.	0.0	0